
EOSCUBE: A Constraint Database System for
High-Level Specification and Efficient Generation

of EOSDIS Products

Final Report for Phase 1: Proof-of-Concept

Alexander Brodsky ttfj
Victor E. Segal St

Consult ants:
Jia Chen t

Menas Kafatos 5
Owen Kelly 5

Larry Kerschberg $
Samuel Varas $
Ruixin Yang 5

t CESDIS, Goddard Space Flight Center (GSFC)

NASA
$Department of Information and Software Engineering (ISE) and

Center for Info. Systems Integration and Evolution CISIE)
School of Information Technology and Engineering t IT&E)

§Center for Earth Observing and Space Research (CEOSR
Institute for Computational Sciences and Informatics (CSI

George Mason University
March 15, 1999

1

I

!

Contents

I EOSCUBE: Executive Summary

I1 Productivity and Feasibility Study

1

4

1 Studied Domains 4

2 EOSCUBE Database of AVHRR Data 5

3 Products and EOSCUBE Programs 10
3.1 NDVI Computation over Arbitrary Areas 10
3.2 Computing Areas with SST and Clouds Satisfying Conditions 12
3.3 Computing Area with SST Changes over Time 14
3.4 Time Series of Spatial Correlation between Shifted Areas - Version 1 . 16
3.5 Time Series of Spatial Correlation between Shifted Areas - Version 2 . 18
3.6 Time Series of Spatial Correlation between Shifted Areas - Version 3 . 21
3.7 Time Series of Spatial Correlation between Shifted Areas - Version 4 . 23
3.8 Temporal Correlation . 25
3.9 Spatial Aggregation . 27
3.10 NDVI Animation Movie . 29
3.11 Temporal Correlation and SST Anomaly'. 31
3.12 Color World Map . 33
3.13 Coloring Counties based on NDVI Means 35
3.14 Counties and NDVI Coverage . 37
3.15 Sort in Drop Order . 39
3.16 NDVI Composition Algorithm . 41

I11 EOSCUBE Features and Language 44

4 Introduction 44

5 CST Objects and EOSCUBE Queries by Example 49
5.1
5.2

Constraints, CST objects and Schema by Example
EOSCUBE Queries by Example .

49
50

IV
tation 54

EOSCUBE Background, Architecture and Implemen-

6 EOSCUBE Monoids and Monoid Comprehensions 54
6.1 54
6.2 Monoids in EOSCUBE . 57
6.3 59

Review of Monoid Comprehensions

Syntax and Semantics of EOSCUBE queries
7 CST Objects and Constraint Calculus 60

60
62
66

7.1 Framework for Constraint Algebra and Calculus
7.2 EOSCUBE Constraint Families and Canonical Forms
7.3 Implementation of CST families .

8 Optimization by Approximation-based Filtering and Indexing 69

9 Related Work 73

10 Lessons Learned 75

V Global Optimization using Workflows: Work in Progress
77

11 Workflow Systems 77

12 Workflow Representation and Scheduling 79

13 Unconstrained Localizable Scheduling 82
82
84

13.1 Problem Statement .
13.2 Shortest Execution Plan Algorithm

14 Constrained Localizable Scheduling 85
86
87

14.1 Problem Statement .
14.2 Constrained Execution Plan Algorithm

15 Additive Unconstrained Optimization 88
88
90

15.1 Problem Statement .
15.2 Algorithm .

16 Extended Workflow Scheduling Problem 91
92
92

16.1 Problem Statement .
16.2 Local Search Algorithm.

3

VI Conclusions and Suggested Future Directions 94

4

I' ,
Part I

EOSCUBE: Executive Summary
The EOSCUBE constraint database system is designed to be a software produc-
tivity tool for high-level specification and efficient generation of EOSDIS and other
scientific products. These products are typically derived from large volumes of multi-
dimenstional data which are collected via a range of scientific instruments.

Main Objectives for Phase 1 (Proof-of-concept):
0 To demonstrate that EOSCUBE can provide considerable savings in develop

ment time of EOSDIS and other scientific products

0 To demonstrate that product generation by EOSCUBE from real data sets is
feasible.

Ultimate Goals (beyond Phase 1):
Productivity gain: EOSCUBE will allow Earth scientists to compactly specify data

products concentrating on their scientific domains, while being relieved from a
considerable programming effort.

Interleaved and Optimized Production: EOSCUBE will provide interleaved pipelined
evaluation of a series of inter-related products, automatically optimizing data-
flow control, buffer management, and materialization supporting clustering and
indexing.

Platform Independence: EOSCUBE will support hardware/software platform in-
dependence, so that platforms' change would only require changing a small
number of interface methods, while leaving products generation software un-
changed. It is planned that EOSCUBE will support a mix of underlying object
managers, databases, mass storage systems, or just file systems in a very flexible
way.

Easy Integration: EOSCUBE is used from within a C++ program and allows to
use existing C/C++ code, without the need to translate data types and formats.

1

Accomplishments in Phase 1:
0 Development of the EOSCUBE proof-of-concept prototype based on the CCUBE

constraint object-oriented database system

0 Specifying in EOSCUBE a range of scientific products, and actually generating

I
19
P
I

a number of them using real input data sets.

0 Preparing reports, within this final report, on:

- Feasibility and productivity study, which contains EOSCUBE specification
of a number of scientific products, and test cases run on real data sets

- Specification of EOSCUBE features and language
- Architecture and implementation of the EOSCUBE prototype
- Work in progress on optimizing multi-product generation workflow
- Recommended course of action

Main Conclusions in Phase 1:
0 EOSCUBE has the potential for significant productivity gain in specification

and generation of EOSDIS and other scientific products

L
1
3

0 Generation of scientific products from real data sets is feasible using the EOSCUBE
prototype

0 An industrial-strength EOSCUBE implementation will be necessary for deploy-
ment and massive use of the system.

0 The EOSCUBE language should allow incremental extensions, which are un-
avoidable in diverse scientific domains

1
1

0 The overall evaluation model should also support data-flow processing (i.e.
pipeline evaluation), in addition to query processing.

0 The main aspects of global optimization should deal with interleaved pipelined
evaluation of series of inter-related products, and concentrate on optimizing
throughput via data flow control, buffer management, and materialization s u p
porting clustering and indexing.

2

P
L Future Action Paths for EOSCUBE:

We elaborate on recommended activities in Section VI. Below is a summary of main
paths of action that will have to be carefully discussed and planned with EOSDIS.

Research Path, including local and global optimization, spatidemporal indexing
and clustering, and GIS constraint algebras

Industrial-strength implementation path, including high-performance EOSCUBE
kernel, pipeline evaluation model, ODBC and platforms support, and GIS inte-
grat ion.

Collaborative work with Earth scientists on a specific set of new products, and
continued customization of EOSCUBE for them. This will also used as a lever-
age for later massive deployment of EOSCUBE.

Deployment of EOSCUBE to Centers and Technical Support

3

Part I1

Productivity and Feasibility Study
1 Studied Domains
We have studied the following three domains of processing in order to selects products
on which to exemplify EOSCUBE. We next briefly elaborate on each.

Geolocation data processing
This domain includes such procedures as pixel scanning algorithms, radar geometry,
and systems of coordinates. The algorithms used in this domain primarily consist of
sequences of vector and matrix manipulations, calculations of function values, long
summations, and other arithmetic operations. Specifically, we studied the following
documents in regards to this domain:

0 MODIS Level 1A Earth Location ATBD

0 TSDIS algorithm descriptions and equations for combined Geolocation, L1B
VIRS and L1B TMI

Conversion of radar measurements into geophysical quantities
This domain directly deals with the radar measurement science. Consequently, data
transformations used by the products are mostly large formulas involving mathemat-
ical analysis entities such as integration over time and space, the gamma function,
trigonometric Al transformations, limits etc. Specifically, we studied the following
documents in regards to this domain:

0 R.Meneghini and T.Kozu, Spaceborne Weather Radar

0 M.Marzoug etc., ’A Class of Single- and Dual- Frequency Algorithms for Rain-
Rate Profiling from a Spaceborne Radar. Part I’ (TRMM)

0 T.Iguchi etc., ’Intercomparison of Single-Frequency Methods for Retrieving a
Vertical Rain Profile from Airborne or Spaceborne Radar Data’ (TRMM)

0 TSDIS Levels 1,2,3 data file specifications

0 TSDIS Toolkit User’s Guide

0 TSDIS Software Design Specifications

4

L

i

1

i

Adjustments of geophysical quantities and their aggregations
over space and time
This domain involves analysis of streams of measured quantities over time intervals,
calculation of more precise values using compositions, adjustments of quantities in
regards to other factors present during measuring, standardization of quantities, spa-
tial aggregation and generation of grids of various resolutions. The transformations
in this domain generally start from level 3 and go up to the data levels suitable for
end-user presentation.

Specifically, we studied the following documents in regards to this domain:

0 MODIS Vegetation Index ATBD

0 MODIS Land Cover ATBD

0 MODIS Infrared Sea Surface Temperature Algorithm

0 MODIS Cloud Top Properties and Cloud Phase

We chose primarily this domain to exemplify the use of EOSCUBE. For the reasons
of data availability, we decided to use data obtained by the Advanced Very High
Resolution Radiometer (AVHRR), which was providec; to us by the CEOSR center at
GMU. Next we discuss the EOSCUBE databases that was created to store AVHRR
data, and which facilitates clustering and secondary storage random access.

2 EOSCUBE Database of AVHRR Data
In the following sections we demonstrate how EOSCUBE can be used to query and
produce products from the the following geophysical parameters: vegetation index,
cloud amount and see surface temperature. The background for calculation of these
parameters has been obtained by studying the documents mentioned above. However,
in this section we are not concerned with how the parameters have been computed
from the lower-level products. Most queries in the next sections deal with performing
computations such as:

0 computing parameters for arbitrarily complex areas

0 describing spatial and temporal characteristics of areas where parameter(s) sat-
isfy a certain condition

0 performing spatial aggregations

5

0 showing area changes over time

A number of products (see details in the next sections) have been actually run on
real-data sets (in the AVHRR database) and produced output. The actual data used
to run those queries has been collected from several missions using the Advanced
Very High Resolution Radiometer (AVHRR). Below are the references to the data
sets descriptions:

0 Los, S.O., C.O. Justice, C.J. Tucker, 1994. A global 1 by 1 degree NDVI
data set for climate studies derived from the GIMMS continental NDVI data.
International Journal of Remote Sensing, 15(17):3493-3518.

0 Rossow, W.B., L.C. Garder, P.J. Lu and A.W. Walker, 1991. International
Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data.
WMO/TD-No. 266 (revised), World Meteorological Organization, Geneva, 76
pp. plus three appendices. Rossow, W.B., and R.A. Schiffer, 1991: ISCCP
cloud data products. Bull. h e r . Meteor. SOC., 72:2-20.

0 Reynolds, R. W. and T. M. Smith, 1994. Improved global sea surface temper-
ature analyses. J. Climate, 7:929-948.

The database that we have constructed represent essentially a grid of cells which prw
vide Earth spatial coverage. The grid is a three-dimensional vector with the dimen-
sions representing latitude, longitude, and a time-point (in months) , correspondingly.
Apart from regular C++ class methods such as constructor and destructor, the grid
also contains the following fields and methods:

0 Resolution is the grid’s resolution, 1 degree in our case

0 LowLat is the latitude value corresponding to the (0,O) grid element

0 LowLon is the longitude value corresponding to the (0,O) grid element

0 Lat-Indlange(C3_CR.ANGE) gives the range of the latitude index that corre-

--

sponds to a given rectangle

0 Lon-Indlange (C3-CAANGE) gives the range of the longitude index that corre-
sponds to a given rectangle

0 Lat-Ind-Upb is the latitude index upperbound

0 Lon-Ind-Upb is the longitude index upperbound

6

U .
Each spatial cell in the grid represents a time series (a vector) of three parametric
values:

NDVI stands for vegetation index, a real number between 0.05 and 0.65. If
the value is missing for a particular space-time point, the value of -99 is used
instead.

0 SST stands for see surface temperature measured in Kelvin. The value of 0 is
used for land surfaces.

0 CLD stands for cloud amount, a real number between 1 and 100 which has been
computed as the average frequency of cloudy pixels. The value of -99 is used
for missing data.

There is also a temporal vector of SOI(Southern Oscillation Index) values. Those
values do not depend on spatial location and are single values for each time point.
Excerpts from the corresponding EOSCUBE declarations appear in Figure 1. The
datasets used adhere to the following assumptions:

Spatial Coverage is global. Data in the grid is ordered from North to South and
from West to East beginning at 180 degrees West and 90 degrees North. Point
(0,O) represents the grid cell centered at 89.5 N and 179.5 W.

Spatial Resolution: The data are given in an equal-angle lat/long grid that has a
spatial resolution of 1 X 1 degree lat/long.

Temporal Coverage: January 1987 through December 1988

Temporal Resolution: Monthly mean.

In the products descriptions in the next sections, we will use the following notation:

0 EOSCUBE database of AVHRR data will denote the input grid, a C++ variable
Grid of the type EOSBIarth-Grid

0 clin-area will denote a C++ variable of type C3-CLIN7 representing an arbi-
trary polygon in CST variables Zat, Zcm

0 dcrangearea will denote a C++ variable of type CBDCRANGE, representing a
union of rectangles in CST variables Zat, Zon

0 crange-area will denote a C++ variable of type CB-CAANGE, representing a
rectangle in CST variables Zat, Zon

7

class EOS3-Cell

public :
//. . .
C3,Double NDVI ;
C3-Double CLD ;
C3,Double SST;
3;

B
L
L

class EOS3_Earth--Grid : public C3,VectorCC3,VectorCC3~VectorCEOS3~CELL> > >

public :
//. . .
C3-Int32 Lat-Ind-Upb;
C3-Int32 Lon-Ind-Upb;
C3,Double Resolution;
C3-Double Low-Lat;
C3-Double Low-Lon;
C3-Range-Monoid Lat-Ind-Range (C3-C-RANGE ;
C3,Range-Monoid Lon-Ind-Range (CS-C-RANGE ;
//. . .
>;

class County

pub1 i c :
//. . .
C3-String Name ;
C3,DC-LIN extent ;
//. . .
1;
%

Figure 1: EOSCUBE Declarations for AVHRR Grid Schema

8

b
L

0 month will denote a C++ variable of type C3-Int32, which represents a time
point, a month index ranging from 0 to 23(for the tweyear period).

0 Result will denote a C++ variable representing the result for each select query.
The type of the variable will be different for each product

0 MBR stands for Minimum Bounded Rectangle

0 SOI-time Aries is a variable of type C3-Vector<C3Double> which represents
the SO1 temporal vector.

The datasets were provided to us in the form of ASCII files and then imported
into EOSCUBE with Objectstore OODB as underlying storage manager. Below is
a sample data fragment representing cloud amount coverage for Jan 1987, extracted
from the corresponding file:

...

...
58.000
58.000
66.000
66.000
66.000
70.000
70.000
73.250
76.500
76.500
61.500
61.500
61.500
72.500
72.500
72.500
49.000
49.000
49.000
79.500
79.500

58.000
58.000
66.000
66.000
66.000
70.000
70.000
76.500
76.500
76.500
61.500
61.500
61.500
72.500
72.500
72.500
49.000
49.000
49.000
79.500
79.500

58.000
58 .OW
66.000
66.000
70.000
70.000
70.000
76.500
76.500
76.500
61.500
61.500
61.500
72.500
72.500
72.500
49.000
49.000
64.250
79.500
79.500

58.000
62.000
66.000
66.000
70.000
70.000
70.000
76.500
76.500
76.500
61.500
61.500
61.500
72.500
72.500
72.500
49.000
49.000
79.500
79.500
79.500

58.000
66.000
66.000
66.000
70.000
70.000
70.000
76.500
76.500
76.500
61.500
61.500
61.500
72.500
72.500
49.000
49.000
49.000
79.500
79.500
79.500

58.000
66.000
66.000
66.000
70.000
70.000
70.000
76.500
76.500
76.500
61.500
61.500
67.000
72.500
72.500
49.000
49.000
49.000
79.500
79.500
79.500

58.000 58.000
66.000 66.000
66.000 66.000
66.000 66.000
70.000 70.000
70.000 70.000
70.000 70.000
76.500 76.500
76.500 76.500
76.500 61.500
61.500 61.500
61.500 61.500
72.500 72.500
72.500 72.500
72.500 72.500
49.000 49.000
49.000 49.000
49.000 49.000
79.500 79.500
79.500 79.500
79.500 79.500

...

9

3 Products and EOSCUBE Programs

3.1 NDVI Computation over Arbitrary Areas
Calculate NDVI for an arbitrarily input polygon area and a given month.

Input

0 EOSCUBE database of AVHRR data

0 clin-area over which NDVI is to be computed

0 month for which NDVI is to be computed

output

Result, of type C3Double, a real value representing the vegetation index for area
at time point tp, calculated using the mean average

Description

An MBR for clin-area is computed, then iteration over the grid’s window corre-
sponding to the MBR is performed using the Lat-IndJhnge and Lon-IndBange
methods. For each cell the TV predicate checks if the cell is actually inside the area.
Each C-RANGE is then checked on intersection with clin-&ea. The NDVI for the
time point month is inserted into result, which is of the special averaging primitive
monoid type.

Sample Input

C3,C-LIN clin-area = (3 * lon - l a t >= 51 1
&& (l a t - lon <= 70 1
&& (lon <= 65)
&& (l a t >= 110 1;

C3-Int32 month = 0;

Output For The Sample Input

See Appendix A.

10

.

Code

1

I

EXEC COMPREH
SELECT (cell.NDV1 1 INTO C CS,Avg<double>) Result

FROM (Grid. Lat-Ind-Range (area-mbr 11 AS (C3-Int32) lat-ind
FROM (Grid. Lon-Ind-Range (area-mbr 1 AS (C3-Int32) lon-ind

DEFINE area-mbr AS C clin-area.Get-MBR0 1

DEFINE delta AS 1 (Grid.Resolution)/2.0 1
DEFINE center-lat AS { Grid.Low,Lat+(Grid.Resolution)*lat,ind + delta)
DEFINE center-lon AS { Grid.Low,Lon+(Grid.Resolution)*lon,ind + delta)

DEFINE cell AS { GridClat-ind] Clon-indl [month] 1
WHERE (clin,area.TV((lat/(center,lat), lon/(center,lon) 1 1

WHERE (cell .NDVI >= (C3,Double)O 1

11

3.2 Computing Areas with SST and Clouds Satisfying Con-
dit ions

Compute the spatial specifications of SST and CA data which satisfy the condition
290K 5 SST 5 300K AND C A 2 50

Input

0 EOSCUBE database of AVHRR data

0 cldlwb, sst-lwb, and sst-upb, of type C3Double

0 month

output

Result, of type C3DC-RANGE am area at time point month, with sstJwb 5 SST 5
sst-upb AND C A 2 cldJwb

Description

Iteration over the whole grid is performed. If the condition on SST and CLD is
satisfied for a cell, the CRANGE corresponding to the cell is constructed and added
to the Result; the latter is of type CSDCAANGE which represents a union of rectangles.

Sample Input

C3-Int32 month = 0;
C3,Double cld-lwb = 70.0;
C3,Double sst-lwb = 200.0;
C3-Double sst-upb = 300.0;

Output For The Sample Input

See the output image in Appendix A.

12

i
L
P
L
L
b
IC
LI
rn
L
L
L
b
L
b
L
b
a
1

Code

EXEC COMPREH
SELECT < square 3 INTO { C3-DC-RANGE > Result
FROM < C3F,Range,Monoid<C3,Int32> (0, Grid. Lat-Ind-Upb, 1) > AS <C3,Int32> lat-in
FROM < C3F,Range,Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1)) AS <C3,Int32) lon-in
WHERE < GridClat-indl Clon-indl [month] .CLD >= cld-lwb 1
WHERE < GridClat-indl [lon-ind] Cmonthl .SST >= sst-lwb 3
WHERE < GridClat-indl Clon-indl Cmonthl .SST <= sst-upb >

DEFINE delta AS < (Grid.Resolution)/2.0 1
DEFINE center-lat AS < Grid.Low-Lat+(Grid.Resolution)*lat-ind + delta)
DEFINE center-lon AS < Grid. Low,Lon+ (Grid. Resolution) *lon,ind + delta)
DEFINE square AS < (center-lat - delta <= lat <= center-lat + delta)

&& (center-lon - delta <= lon <= center-lon + delta) 3
*
END COMPREH

13

3.3 Computing Area with SST Changes over Time
For two given months, find the spatial area where SST has increased by sst-delta.

Input

0 EOSCUBE database of AVHRR data

0 month-1

0 month2

0 sst-delta, of type C3Double

output

Result, of type C3DCMNGE , an area where the SST has increased at least by
sst-delta from time point month-1 to time point month2

Description

Iteration over the whole grid is performed. If the condition on SST for the two given
months is satisfied for a cell, the CR.ANGE corresponding to the cell is constructed
and added to the Result; the latter is of type C3DC-RANGE which represents a union
of rectangles.

Sample Input

C3-Int32 month-1 = 0;
C3-Int32 month-2 = 1;
C3-Double sst-delta = 1.0;

Output For The Sample Input

See Appendix A.

14

-
I .

Code

EXEC COMPREH
SELECT { square 3 INTO { C3-DC-RANGE 1 Result
FROM { C3F,Range,Monoid<C3_1nt32> (0, Grid. Lat-Ind-Upb, 1) 1 AS CC3-Int32) lat-in
FROM { C3F,Range,Monoid<C3-Int32> (0, Grid. Lon-Ind-Upb, 1)) AS CC3-Int32) lon-in
WHERE { Grid [lat-indl [lon-indl [month-21 . SST -

GridClat-indl Elon-indl [month-11 . SST >= sst-delta 1
DEFINE delta AS { (Grid.Resolution)/2.0 >
DEFINE center-lat AS C Grid.Low,Lat+(Grid.Resolution)*lat-ind + delta)
DEFINE center-lon AS C Grid.Low-Lon+(Grid.Resolution)*lon-ind + delta)
DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta)

&& (center-lon - delta <= lon <= center-lon + delta))
D

END COMPREH

15

I
3.4 Time Series of Spatial Correlation between Shifted Areas

- Version 1
For a selected a spatial region and a latitude/longitude shifts, (with the shifts, another
region is defined; the two regions have the same shape and same size), compute a time
series, that, for each month, will hold the spatial correlation (point to point) between
SST over region 1 and NDVI over region 2.

Input

0 EOSCUBE database of AVHRR data

0 clin-area

0 lat-shift , of type C3Double

0 l onsh i f t , of type C3Double

output

Result, of type C3_Vector<C3Double> , a vector of real values representing spatid
correlation for each month.

Description

The main query iterates over time first and uses a custom spatial correlation function,
area-corr, which is implemented here

Sample Input

N/A

Output For The Sample Input

N/*

16

c
c

.
Code

EXEC COMPREH
SELECT < area-cod area, month) 1
INTO C C3,Vector<C3,Double>) Result
FROM C C3F,Range_Mon(O, Max-Month-1)) AS (C3-Int32) month
;END COMPREH

This computation uses the function area-corr, which is defined next:

C3,Double area-corr (C3,C-LIN area, C3-Int32 month)C
sprod = sum-ndvi = sum-sst = sum-ndvi-sq = sum-sst-sq = 0;

EXEC COMPREH
PERFORM C sprod += cell.NDV1 * new,cell.SST;

sum-ndvi += cell.NDV1;
sum-sst += cell.SST;
sum-ndvi-sq += cell.NDVI* cell.NDV1;
sum-sst-sq += cell.SST* cell.SST;

FROM C C3F,Range,Mon(Os Grid.Lat,Ind,Upb)) AS lat-ind
FROM C C3F,Range,Mon(Os Grid.Lon-Ind-Upb)) AS lon-ind

3

DEFINE lat-Val AS { Grid.Low,Lat+(Grid.Resolution)*lat-ind)
DEFINE lon-Val AS C Grid. Low-Lon+ (Grid. Resolution) *lon-ind)

DEFINE new-lat-ind AS Oat-ind + lat,shift/Grid.Resolution)
DEFINE new-lon-ind AS Clon-ind + lon,shift/Grid.Resolution)
DEFINE cell AS < GridClat-indl Clon-indl honthl >
DEFINE new-cell AS { Grid Cnew-lat,indl [new-lon,indl [month] 3

WHERE (area.TV(lat/lat-val , lon/lon-val))

END COMPREH

C3,Double n = (Grid.Lat,Ind,Upb+l) * (Grid.Lon,Ind,Upb+l)
C3,Double ndvi-avg = sum-ndvi/n;
C3,Double sst-avg = sum-sst/n;
double corr = (sprod/n - ndvi,avg*sst-avg)/ (sqrt

(sum,ndvi,sq/n-ndv i-avg*ndv i-avg) * s qrt
(sum,sst,sq/n-sst-avg*sst-avg) 1

return (corr)

17

3.5 Time Series of Spatial Correlation between Shifted Areas
- Version 2

This is another (number 2) implementation of the spatial correlation product

Input

0 EOSCUBE database of AVHRR data

0 clin-area

0 l a t s h i f t , of type C3Double

0 lonsh i f t , of type C3Double

output

Result, of type C3_Vector<C3Double> , a vector of red vdues representing spatid
correlation for each month.

Description

Iteration over time goes first and materializes correlation sequences for each iteration.
A generic correlation function, correl is implemented here.

Sample Input

N/A

Output For The Sample Input

N/A

18

Code

EXEC COMPREH
SELECT C correl (corr-seqs) 1
INTO CC3-Vector<C3-Double> Result
FROM C C3F_Range,Mon(O, Max-Month-1) > AS {C3_Int32> month
DEFINE corr-seqs AS C area,corr,seqs(area,month) >
J

END COMPREH

C3-Vector<C3,Pair<C3,Double,C3,Double>>
area-corr-seqs (C3,C-LIN area, C3-Int32 month

EXEC COMPREH
SELECT < C3,Pair<CS_Double ,CS,Double> (cell. NDVI , new-cell . SST)
INTO ~C3,Vector<C3,Pair<C3,Double,C3,Double>>> Result
FROM < C3F,Range,Mon(O, Grid.Lat,Ind,Upb)) AS lat-ind
FROM < C3F,Range,Mon(O, Grid .Lon,Ind,Upb)) AS lon-ind

DEFINE lat-val AS -(Grid.Low,Lat+(Grid.Resolution)*lat,ind>
DEFINE lon-val AS < Grid.Low,Lon+(Grid.Resolution)*lon,ind)
DEFINE new-lat-ind AS (lat-ind + lat,shift/Grid.Resolution)
DEFINE new-lon-ind AS (lon-ind + lon-shift/Grid .Resolution)
DEFINE cell AS { GridClat-indl Clon-indl [month] >
DEFINE new-cell AS C Grid [new-lat-indl Cnew,lon,indl [month] >

WHERE k e a .TV(lat/lat,val, lon/lon,val)>

J

END COMPREH
return Result;
1;

C3,Double carrel(C3,Vector<C3,Pair<C3-Double,C3,Double>> corr-seqs
C
xysum = xsum = ysum = x2sum = y2sum = 0;
PERFORM Cxysum += x*y;

xsum += x;
ysum += y;
x2sum += x*x;
y2sm += y*y;

19

1
FROM { corr-seqs) AS pair

DEFINE x AS pair.First
DEFINE y AS pair.Second

END COMPREH

C3,Double n = corr-seqs . Count 0 ;
C3-Double xavg = xsum/n;
C3,Double yavg = ysumh;
double corr = (xysumln - xavg*yavg) 1

return (corr)
(sqrt (x2sum/n-xavg*xavg) *sqrt (y2sum/n-yavg*yavg) 1

20

.

3.6 Time Series of Spatial Correlation between Shifted Areas
- Version 3

Input

EOSCUBE database o f AVHRR data

clin-area

0 l a t s h i f t , of type C3Double

0 l o n s h i f t , of type C3Double

output

Result, of type CS-Vector<C3Double> , a vector of real values representing spatial
correlation for each month.

Description

Same as the previous product, but correlation sequences are not materialized; rather
special monoid is used which incrementally implements correlation.

Sample Input

N/A

Output For The Sample Input

N/A

21

Code

EXEC COMPREH
SELECT (area-corr(area, month) 3
INTO (C3-Vector<C3-Double> Result
FROM (CSF-Range,Mon(O, Max-Month-1)) AS CC3-Int32) month

END COMPREH
J

C3-Double area-corr (C3-C-LIN area, C3-Int32 month

EXEC COMPREH
SELECT C C3-PaircC3-Double ,C3_Double> (cell. NDVI , new-cell . SST)
INTO (C3_Correl<C3_Double>> Result
FROM (C3F_Range_Mon(O, Grid.Lat,Ind,Upb)> AS lat-ind
FROM -(CSF,Range,Mon(O, Grid.Lon-Ind,Upb)) AS lon-ind

DEFINE lat-Val AS (Grid.Low,Lat+(Grid.Resolution)*lat,ind)
DEFINE lon-Val AS { Grid. Low,Lon+ (Grid. Resolution) *lon,ind>

DEFINE new-lat-ind AS (lat-ind + lat-shif t/Grid .Resolution)
DEFINE new-lon-ind AS (lon-ind + lon-shif t/Grid .Resolution>
DEFINE cell AS (GridClat-ind] Clon-indl [month]. 1
DEFINE new-cell AS -(Gridhew-lat-ind] [new-lon-indl [month] 1

WHERE (area .TV(lat/lat,val, lon/lon-val)>

s

END COMPREH
return Result;
>

22

-
1 - . *

.

I
t

I

I

1

1
I

I

i

i
I
I
1
I
I
1
I

!
I

l
a

i

i
I

3.7 Time Series of Spatial Correlation between Shifted Areas
- Version 4

Input

0 EOSCUBE database of AVHRR data

0 clin-area

0 lat -shi f t , of type C3Double

0 l o n s h i f t, of type C3Double

output

Result, of type C3_Vector<C3Double> , a vector of real values representing spatid
correlation for each month.

Description

This more efficient version iterate over cells first and computes all correlation d u e s
simultaneously

Sample Input

C3,C-LIN clin-area = (100 <= l a t <= 110 && 50 <= lon <= 60); // part of No
C3,Double lon-shift = -60 ; // into Pacific ocean
C3,Double lat -shi f t = -20 ;

Output For The Sample Input

See Appendix A.

23

Code

CS-Correl<double> Result [Max-Monthsl;

EXEC COMPREH
PERFORM

FROM (Grid. Lat-Ind-Range (area-mbr) 1 AS (C3-Int321 lat-ind
PERFORM C C3M_TRACE(lat,ind) 1
FROM (Grid.Lon-Ind-Range(area-mbr)) AS (C3-Int321 lon-ind

DEFINE area-mbr AS < clin-area.Get-MBR0 3

DEFINE delta AS ((Grid.Resolution)/2.0 1
DEFINE center-lat AS (Grid.Low-Lat+(Grid.Resolution)*lat,ind + delta)
DEFINE center-lon AS (Grid.Low,Lon+ (Grid. Resolution) *lon-ind + delta)

DEFINE new-lat-ind AS (lat-ind + lat,shift/Grid. Resolution)
DEFINE new-lon-ind AS {lon-ind + lon-shift/Grid.Resolution>
DEFINE cell-ts AS { GridClat-ind] Clon-indl 1
DEFINE new-cell-ts AS { Grid [new-lat-indl [new-10x1-indl 1

WHERE { clin-area.m((lat/(center,lat), lon/(center-lon) 1 1

SELECT (C3,Pair<double ,double> (cell-ts [month] . NDVI ,

INTO correl
FROM ~C3F~Range~Monoid<C3~Int32>(0,Max,Months-1,1~~ AS (C3-Int32) month

new-cell-ts [month] . SST) 1

DEFINE correl AS (Result[monthl 1
J

,
END COMPREH

24

.

i

3.8 Temporal Correlation
For time periods when SO1 < 0 (or >= 0) , compute the spatial region over which the
temporal correlation between NDVI and SO1 is equal to or greater than a given vdue
t c -1 wb.

Input

0 EOSCUBE database of AVHRR data

0 tc lwb, of type C3Double

output

Result, of type CSDCRANGE, an area where the temporal correlation between SO1
and NDVI over the 24 months is at least tc-lwb

Description

straight forward

Sample Input

C3-Double tc-lwb = 0.6 ;

Output For The Sample Input

See the outpour image in Appendix A.

25

Code

EXEC COMPREH
SELECT C square 1 INTO C C3,DC-RANGE 1 Result
FROM
FROM

L
m
1
m
P
E

C3F_Range_Monoid<C3_Int32> (0, Grid. Lat-Ind-Upb, 1) 1 AS (C3-Int32) lat-i:
C3F,Range,Monoid<C3_1nt32> (0, Grid. Lon-Ind-Upb , 1) 1 AS (C3-Int321 lon-in

DEFINE cell-ts AS { GridClat-indl [lon-ind] 1
SELECT { C3,Pair<double,double>(cell~ts~month] .NDVI,

INTO (C3_Correl<double>) correl
FROM C C3F,Range_Monoid<C3_1nt32> (0, Max-Months-l , 1) 1 AS CC3-Int32) month
WHERE { cell,ts[month] .NDVI >= 0.0 1
WHERE C SOI,Time-SeriesCmonthl >= 0.0 3

SOI-Time-Series [month]) 1

D

WHERE C (doub1e)correl >= tc-lwb 1
DEFINE delta AS I (Grid.Resolution)/2.O 1
DEFINE center-lat AS Grid.Low-Lat+(Grid.Resolution)*lat-ind + delta3
DEFINE center-lon AS C Grid .Low-Lon+ (Grid. Resolution) *lon,ind + delta)
DEFINE square AS C (center-lat - delta <= lat <= center-lat + delta)

&& (center-lon - delta <= lon <= center-lon + delta) 3
J

END COMPREH

26

.
I

.
3.9 Spatial Aggregation
Produce a new grid which is N * N times more coarse for a given month.

Input

0 EOSCUBE database of AVHRR data

0 N, of type C3-Int32

0 month

output

Result, of type EOS3Zarth-Grid , a new coarse grid with the resolution N the input
grid resolution(at time point month), and NDVI values averaged for each coarse cell
over finer cells inside it.

Description

Iteration over coarse cells goes first, then corresponding finer cells are visited and
NDVI is averaged using the averaging monoid

Sample Input

C3Jnt32 month = 0;
C3-Int32 N = 10;

Output For The Sample Input

See Appendix A.
--

27

Code

EOS3-Earth-Grid New-Grid(360/N, 180/N ;
New-Grid .Size,Allo ;

EXEC COMPREH
PERFORM
FROM { C3F_Range_Monoid<C3_Int32> (0, Grid. Lat-Ind-Upb/N, 1) 3

FROM { C3F,Range,Monoid<C3,Int32> (0, Grid. Lon-Ind,Upb/N, 1) 3
AS (C3-Int32) new-lat-ind

AS (C3-Int323 new-lon-ind
SELECT { cell.NDV1 3
INTO {C3_Avg<double>) avg-ndvi
FROM (C3F-Range,Monoid<C3,Int32>(new-lat,ind*N, (new,lat-ind+l)*N-l, 1))

FROM { C3F,Range,Monoid<C3_1nt32> (new,lon,ind*N, (new,lon-ind+l) *N-l, 1) 3
AS (C3-Int32) lat-ind

AS (C3-Int323 lon-ind
DEFINE cell AS (GridClat-indl Clon-indl [month] 3

WHERE c cell.NDV1 >= 0.0 1
3

PERFORM (New-Grid [new-lat-indl [new,lon-indl [month] . NDVI = (C3,Double) avg-ndvi
8

END COMPREH

28

.

3.10 NDVI Animation Movie
Produce a sequence of areas with NDVI at least ndvi-lwb for 24 months.

Input

0 EOSCUBE database of AVHRR data

0 ndvi-lwb, of type C3Double

output

Result, of type C3_Vector<C3DCLIN>, representing a collection of areas with NDVI
equal or greater than ndvi-lwb

Description

Iteration over all time points is performed, then NDVIZESS(ndvi-lup) is called on
each iteration

Sample Input

C3-Double ndvi-lwb = 0 .4 ;

Output For The Sample Input

See Appendix A + animation in the demo.

29

b Code

%

EXEC COMPREH
SELECT { frame 1
INTO (C3_Vector<C3,DC,RANGE>) Result
FROM (C3F~Range,Monoid<C3~Int32>(0,Max,Months-1,1~3 AS (C3-Int32) month

SELECT { square 1 INTO { C3,DC-RANGE 1 frame
FROM { C3F-Range-Monoid<C3,Int32>(0, Grid.Lat-Ind-Upb, 1))

FROM { C3F,Range,Monoid<C3,Int32>(0, Grid.Lon,Ind,Upb, 113

WHERE 1 GridClat-ind] [ion-ind] Cmonthl .NDVI >= ndvi-lwb 1

AS (C3-Int323 lat-ind

AS CC3-Int32) lon-ind

DEFINE delta AS ((Grid.Resolution)/2.0 1
DEFINE center-lat AS < Grid.Low,Lat+(Grid.Resolution) *lat,ind + delta)
DEFINE center-lon AS -(Grid. Low,Lon+ (Grid. Resolution) *ion-ind + delta)
DEFINE square AS ((center-lat - delta <= lat <= center-lat + delta)

&& (center-lon - delta <= lon <= center-lon + d e l t a
,

8

END COMPREH

30

.

3.11
Compute the spatial area in which the temporal correlation between SST Anomaly
and CA is greater than or equal to tc lwb.

Temporal Correlation and SST Anomaly

Input

0 EOSCUBE database of AVHRR data

0 t c l w b

output

Result of type C3DCRANGE which represents the computed area.

Description

Note, anomaly here is a difference between a SST value and SST 2-year average.

Sample Input

N/A

Output For The Sample Input

N/A.

31

Code

EXEC COMPREH
SELECT (square 1 INTO (C3-DC-RANGE) Result
FROM (C3F_Range_Mon<Int32> (0, Grid. Lat-Ind-Upb, 1)) AS (Int32) lat-ind
FROM (C3F,Range_Mon<Int32>(0, Grid.Lon,Ind,Upb,l)) AS (Int32) lon-ind E

c1
m
E

SELECT (GridClat-ind] [lon-indl [month] .SST 3
INTO {C3_Avg<double>) sst-avg
FROM (C3F_Range_Mon<Int32)=>(0, Max-Month-l , 1))
WHERE (cell-tsCmonth1 .SST >= 0 1

SELECT (C3-Paircdouble ,double> (cell-ts [month] . CLD, sst-anomaly
INTO (C3_Correl<double>) correl
FROM (C3F_Range_Mon<Int32> (0, Max-Month-l , 1)) AS (Int32) month
WHERE C cel1,tsCmonthl .CLD >= 0 >
W H E R E C cel1,tsCmonthl .SST >= 0 1

AS (Int32) month

J

1

J b DEFINE sst-anomaly AS (Grid Clat-indl [lon-indl [month] . SST-sst-avg)

WHERE ((doub1e)correl >= correl-lwb)

b
b

DEFINE delta AS ((Grid.Resolution)/2.0 1
DEFINE center-lat AS { Grid. Low,Lat+ (Grid. Resolution) *lat,ind + delta)
DEFINE center-lon AS { Grid. Low-Lon+ (Grid. Resolution) *lon-ind + delta)
DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta)

&& (center-lon - delta <= lon <= center-lon + delta))
I

D

END COMPREH

32

h

E

.

3.12 Color World Map
Create three spatial areas: green, yellow and red, classified by NDVI ranges, per given
month

Input
e

0 EOSCUBE database of AVHRR data

0 month

output

0 green-area of type CBDCJUNGE

0 yellow-area of type CBDCRANGE

0 redarea of type C 3 D C M G E

Description

Straightforward.

Sample Input

N/A

Output For The Sample Input

N/A

i

33

Code

FROM (C3F_Range_Monoid<C3,Int32>(0, Grid.Lat-Ind-Upb,l)) AS (C3-Int32) lat-in
FROM (C3F,Range,Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1) 1 AS (C3Jnt32) lon,

C3,DC-RANGE green-area, yellow-area, red-area

EXEC COMPREH
SELECT square (lat-ind, lon-ind , Grid .res)
INTO (C3-DC-RANGE) green-area

WHERE (Grid [lat-ind] [lon-indl [month] . NDVI <= green-NDVI-bound) 3
SELECT square(1at-ind, lon-ind, Grid.res)
INTO (C3-DC-RANGE) yellow-area

FROM (C3F,Range_Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1)) AS (C3-Int32)
FROM (C3F,Range_Monoid<C3,Int32> (0, Grid. Lat-Ind-Upb, 1)

WHERE (Grid [lat-ind] [lon-ind] [month] . NDVI >. green-NDVI-bound &&
Grid [lat-indl [ion-indl [month] . NDVI <= yellow,NDVI,bound)

J

SELECT square (lat-ind, lon-ind, Grid .res>

INTO (C3-DC-RANGE) red-area
FROM (C3F-Range,Monoid<C3-Int32>(0, Grid.Lat-Ind-Upb,l)) AS (C3-Int32) lat,
FROM (C3F,Range_Monoid<C3,Int32> (0, Grid. Lon-Ind-Upb, 1)) AS (C3-Int32) lon-i
WHERE (Grid [lat-ind] [lon-ind] [month] . NDVI > yellow-NDVI-bound)

. -- END COMPREH

C3-C-RANGE square (int lat-ind, int lon-ind, double res) ;
(C3,CST-Var lat * lon ;
return(Grid.lat,low + lat,ind*res <= lat &&

Grid.lat,low + (lat-ind + l)*res &&
Grid.lon,low + lon-ind*res <= lon &&
Grid.lon,low + (lon-ind + l)*res

1

34

3.13 Coloring Counties based on NDVI Means
Color USA counties by mean NDVI values

Input

0 EOSCUBE database of AVHRR data

0 EOSCUBE database of USA counties

0 month

output

Result of type C3_Vector<C39air<C3_String, C3_String>> to hold pairs of county
name and the associated color, for each county.

Description

See the description of the USA database of counties in the EOSCUBE Language And
Features section

Sample Input

N/A

Output For The Sample Input

N/A
I

35

.

Code

EXEC COMPREH
SELECT { C3_Pair<CS,String, C3_String> (county .name, Color(ndvi-Val) 3
INTO C3-Vector<C3,Pair<C3-String,C3-String>>) Result
FROM { all-counties 3 AS (County) county m SELECT { cell.ndvi 3 INTO { C3-Avg<double>) ndvi-Val

DEFINE area-mbr AS { county. extent. Get-MBRO
FROM (Grid. Lat-Ind-Range (area-mbr) AS (C3-Int32) lat-ind
FROM (Grid.Lon,Ind,Range(area-mbr) AS (C3-Int323 lon-ind rn

DEFINE delta AS (Grid.Resolution)/2.0)
DEFINE center-lat AS { Grid.Low-Lat+(Grid.Resolution) *lat,ind + d e l t m
DEFINE center-lon AS
DEFINE square AS ((center-lat - delta <= lat <=

Grid.Low-Lon+(Grid.Resolution)*lon-ind + delta

b
m

center-lat + delta
&& (center-lon - delta <= lon <= center-lon + delta))

WHERE area.TV(lat/lat,val, lon/lon-val) 1

WHERE { cell.NDV1 >= 0)
DEFINE cell AS { GridClat-ind] [lon-indl [month])

8

END COMPREH 1
C3,String Color (C3,Double value
c
if ((value <= 0.3
c
return IIgreen" ;

I 3
else if ((value <= 0 . 5) && (value >= 0.3 1 1
.c
return "yellow" ;

J
else if ((value >= 0.5 1

return "red" ;
3
3 ;

36 .

3.14 Counties and NDVI Coverage
Find the counties where areas of NDVI coverage of ndvi-lwb a,re at least the given
percentage of the county’s total area

Input

0 EOSCUBE database of AVHRR data

0 EOSCUBE database of USA counties

0 month

0 ndvi-lwb

0 percentage

output

Result of type CS-Vector<CSString>> to hold county names.

Description

straightforward

Sample Input

N/A

Output For The Sample Input

N/A

37

,

,
I

L

Code

EXEC COMFTEH
SELECT (square > INTO < C3-DC-RANGE 1
FROM (C3F-Range-Monoid<C3,Int.32> (0, Grid. Lat-Ind-Upb, 1) 1 AS CC3-Int32) lat-in
FROM (C3F-Range-Monoid<C3,Int32> (0 , Grid. Lon-Ind-Upb, 1) 1 AS (C3-Int32) lon-i
WHERE (Grid [lat-indl [lon-indl [month-11 . NDVI >= ndvi-lwb 1

ndvi-coverage

DEFINE
DEFINE
DEFINE
DEFINE

J

END COMPREH

delta AS ((Grid.Resolution)/2.0 1
center-lat AS { Grid.Low,Lat+(Grid.Resolution) *lat,ind + delt
center-lon AS { Grid .Low,Lon+(Grid .Resolution) *lon-ind + delta
square AS 1 (center-lat - delta <= lat <= center-lat + delta

rn
&& (center-lon - delta <= lon <= center-lon + delta))

EXEC COMPREH
SELECT (county.Name)
INTO { C3_Vector<CS,String>) Result
FROM (all-counties > AS (County) county

WHERE I SQ(isec)/SQ(county.extent) >= percentage 3

END COMPREH

DEFINE isec AS { county.extent && ndvi-coverage

J

38

3.15 Sort in Drop Order
Sort the counties in the order of NDVI drop from the period of the first 12 months
to the period of the last 12 months.

Input

0 EOSCUBE database of AVHRR data

0 EOSCUBE database of USA counties

output

Result of type Sorted_Vector<C33tring, C3Double> to hold county names sorted
in the drop order

Description

straightforward

Output For The Sample Input

See Appendix A.

39

Code

R
I)

II

LI

EXEC COMPREH
SELECT (C3_Pair<C3,String, C3_Double> (county. Name, avg-drop) >
INTO (Sorted_Vector<C3_String, C3,Double>) Result
FROM (all-counties) AS (County) county

DEFINE area-mbr AS { county.extent.Get-MBRO 1
FROM (Grid. Lat-Ind-Range (area-mbr) AS (C3-Int32) lat-ind
FROM (Grid. Lon-Ind-Range (area-mbr AS (C3-Int32) lon-ind
DEFINE delta AS { (Grid.Resolution)/2.O

DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta 9 DEFINE center-lat AS { Grid .Lou,Lat+(Grid. Resolution) *lat,ind + del
DEFINE center-lon AS (Grid.Lou,Lon+(Grid .Resolution) *lon,ind + del

&& (center-lon - delta <= lon <= center-lon + delta))
WHERE (area.TV(lat/lat,val, lon/lon,val) >

DEFINE cell-ts AS { GridClat-ind] Clon-indl
SELECT (cell-tsCmonth].NDVI - cell,ts[month+Max,Month/21.NDVI 1
INTO {C3,Avg<C3-Double>) avg-drop
FROM (C3F_Range_Mon(O, Max-Month-1)) AS month

J

END COMPREH

Sample Input

40

3.16 NDVI Composition Algorithm

I

In this section we show an EOSCUBE implementation of the Vegetation Composition
Algorithm. The main task of the algorithm is to analyze the input stream of pixel
measurements and to apply the corresponding VI computation method based on the
number of well measured pixels in each composition period. The detailed description
of the algorithm can be found in the Vegetation Index ATBD document, and we will
not repeat it here.

This EOSCUBE implementation of the algorithm demonstrates the following
EOSCUBE benefits:

0 the EOSCUBE program reads as a very well-structured high-level procedure;
the correspondence between EOSCUBE code and the data flow diagram in the
Vegetation Index ATBD document is very clear

0 Using the EOSCUBE language FROM clauses and the RANGE monoid for
iteration over the stream indices hides all details of loop creation of a traditional
programming language, such as checking if the index is in the range or index
increment, thus making the program more compact and readable

0 Use of built-in COUNT, MAX, and MAXPAIR monoids allows to perform the
operations of counting elements, finding minimums and maximums in just one
line of code and within the model of the query language. Also each of those
monoids incorporates pieces of the code that would othenvise require a separate
implement ation

We assume that the input stream is represented by a twedimensional vector
all-pixels. The first dimension is spatial and corresponds to all pixels, the second is
the temporal dimension with daily resolution. The type of the elements is PixelData
which contains various input parameters required for the VI Composition Algorithm,
such as reflectivities, angles and quality control data. The PixelData type is shown
below:

. --

class Pixel-Data c
f loat ro-nir ;
f loat ro-red;
f loat theta-v;
f loat theta-s ;
f loat phi-v ;
f loat phi-s ;
qc qc;

1;

41

R The following EOSCUBE product implements the main part of the VI Composi-
tion Algorithm, following the algorithm description in the Vegetation Index ATBD
document:

EXEC COMPREH
FROM (C3F,Range-Monoid<C3,Int32> (0 ,max-pixels, 1) 3 AS (C3-Int32) pix-ind
FROM { C3F,Range_Monoid<C3,1nt32> (0 ,rnax_days/8,1) 3 AS (C3-Int323 8-ind

DEFINE Good-Pix-Count AS
SELECT (day-ind 3 INTO (Count<C3-Int32>>
FROM (C3F-Range-Monoid<C3-Int32> (8_ind*8, 8_ind*8+7,1> 3 AS {C3,Int32> d
WHERE { Is-Good(all-pixels [pix-indl [day-indl
DEFINE NDVI-value AS {

1

switch (Good-Pix-Count c
case >= 5 : BRDF(pix-ind, 8-ind)
case <= 5 && > 0 : Max-NDVI-Angle(pix-ind, 8,ind)
case 0 : Max-NDVI(pix-ind, 8-ind)

1
PERFORM Result [pix-indl [day-ind] = NDVI-value
END COMPREH

The programs Max-NDVIhgle (pix-ind, 8-ind) ,MaxNDVI (pix-ind, 8-ind) and BRDF (pix-i
8-ind) are implemented as described in the Vegetation Index ATBD document and
specify different NDVI composition methods. Below we give- an implementation for
the Max-NDVIhgle (pix-ind ,8-ind) and MaxJJDVI (pix-ind , 8-ind) programs:

DEFINE Max-NDVI-Angle (pix-ind, 8-ind) AS
DEFINE ndvi-pair AS
SELECT C3-Pair<all-pixels [pix-indl [day-indl . theta-v ,

INTO ~MINPAIR<C3~Double,C3~Double>) ndvi-pair
FROM RANGE(8_ind*8, 8_ind*8+7) AS {C3,Int323 day-ind
MAX(ndvi-pair . 1st ,

NDVI (all-pixels [pix-indl [day-indl >

ndvi-pair .2nd)
END

DEFINE Max-NDVI (C3-int32 pix-ind, C3-int32 8-ind) AS
SELECT NDVI (all-pixels [pix-indl [day-indl)
INTO {MAX<C3_Double>> Max-NDVI
FROM RANGE(8_ind*8, 8_ind*8+7) AS CC3-Int32) day-ind

END

42

I ”

Here MINPAIR is monoid which computes two smallest numbers in a collection and is
capable of storing additional information corresponding to those numbers, which is a
pair of NDVI values in this case. The NDVI function encodes the formula computing
NDVI out from pixel data using one of the formulas described in the Vegetation Index
ATBD document.

43

Part I11

EOSCUBE Features and Language
4 Introduction
Constraints provide a flexible and uniform way to conceptually represent diverse data
capturing spatietemporal behavior, complex modeling requirements, partial and in-
complete information etc, and have been used in a wide variety of application do-
mains. Constraint databases (CDBs) have recently emerged to deeply integrate data
captured by constraints in databases. Although a relatively new realm of research,
constraint databases have drawn much attention and increasing interest, mostly in
aspects of expressibility and complexity, but also in algorithms and optimization.

Constraint databases are very promising for applications requiring to support large
heterogeneous data sets that can be uniformly captured by constraints. This includes
(1) engineering design; (2) manufacturing and warehouse support; (3) electronic trade
with complex objectives; (4) command and control (such as spatio-temporal data
fusion and sensor management [ABK95] and maneuver planning [BVCSSS]); (5) dis-
tribution logistics; and (6) market analysis.

While many fundamental research questions are yet to be answered, we believe
that the area of constraint databases became mature for a reliable research proto-
type that could serve as a stable platform for experimentati~n with algorithms and
optimization techniques as well as for real-life case studies of a number of promising
application domains. We believe that building such a system is a crucial step to-
ward proving the validity of constraint databases as a technology with a significant
practical impact.

Motivation and Design Goals

Until now, most of the work on CDBs has been theoretical (see Related Work section).
CDB researchers are being challenged by the question whether the CDB technology
can really work on real-life, real-size, real-performance applications, or it is just an
intellectual toy that will eventually fade away. This parallels, in a sense, to the state
of relational databases before the first two prototypes, Ingres and System-R, were
developed. Our view is that the viability test for the CDB technology will be the
ability to achieve competitive performance and scalability. Therefore, algorithms,
data structures and optimization techniques are the most critical issues.

At the beginning of the EOSCUBE work we had two main choices regarding
the design objectives: (1) to naively implement a high-level and purely declarative

44

1

constraint DB language, such as Lyr ic , focusing on its interface, but ignoring the
performance and scalability, or (2) to develop an extensible infrastructure (Le. an
intermediate, optimization-level language, in which evaluation plans can be explicitly
expressed) suitable for developing and testing optimization techniques, algorithms
and data structures.

The first choice would lead to a much faster and simpler implementation, and, in
fact, this is the way most research prototypes are implemented. The second choice,
clearly, is considerably more work- and time-intensive, but is essential for our overall
objectives. Of course, ideally, we would like to have both a high-level language and a
full-scale optimizer in place, but this would not be possible without developing first
the optimization infrastructure of (2). This direction was indeed our choice.

The following were our main design principles:

1. In terms of constraint domains and operators, a careful balance between ex-
pressiveness and complexity must be achieved. It is easy to fall into a trap of
highly expressive constraint domains for almost any imaginable types of data,
but with absolutely impractical complexity.

2. The language and the model should be object-oriented, since many object-
oriented features are important for the target applications (e.g. [ABK95]).

3. The language should be suitable for explicitly expressing highly optimized eval-
uation plans (preserving their 1/0 time and space complexity). It must be flexi-
ble enough to support object-oriented optimization (e.g.' ENCORE [Zdo89], 0 2
[ea90], POSTGRES [SRHSO]), constraint database optimization (e.g. [BJM93])
and constraint indexing and filtering (e.g. [BW95]).

4. The system should be extensible with respect to (constraint and other) data
types, operators and predicates, and special data structures and algorithms.

5. The system should allow easy interaction with an underlying programming lan-
guage in order to be usable directly by system or application programmers

6. Provided the previous principles are met, the language should ideally be as
high-level and easy-to-use as possible.

EOSCUBE Features and Architecture
The EOSCUBE data manipulation language, Constraint Comprehension CuZcuZus is
an integration of a constraint culcvlvs for extensible constraint domains within monoid
comprehensions, which were suggested as an optimization-level language for object-
oriented queries [FM95]. In the following, when no misinterpretation arises, we will

45

be using the same name EOSCUBE for both the system and the language of the
constraint comprehension calculus.

The data model for constraint calculus is adapted from constraint spatio-temporal
(CST) objects [BK95], that may hold spatio-temporal constraint data, conceptually
represented by constraints (i.e. symbolic expressions). In the current version, linear
arithmetic constraints (i.e. inequalities and equations) over reals are implemented.
New CST objects are constructed using logical connectives, existential quantifiers and
variable renaming, within a mutli-typed constraint algebra.3 The constraint module
also provides predicates such as for testing satisfiability, entailment etc, that are used
as selecting conditions in hosting monoid comprehension queries.

CST objects possess great modeling power and as such can serve as a uniform
data type for conceptual representation of heterogeneous data, including spatial and
temporal behavior, complex design requirements and partial and incomplete infor-
mation. Moreover, the constraint calculus operating on CST is a highly q r e s s i v e
and compact language. For example, just linear arithmetic CSTs and its calculus
currently implemented in the system, allow description and powerful manipulation
of a wide variety of data, including (1) 2- or 3-D geographic maps; (2) geometric
modeling objects for CAD/CAM; (3) fields of vision of sensors; (4) 4-D (3 + 1 for
time) trajectories of objects moving in a 3-D space, based on the movement equations;
(5) translations of different system of coordinates; and (6) operations research type
models such as manufacturing patterns describing interconnections between quanti-
ties of manufactured products and resource materials. It is important to note that the
conceptual and physical representations of CST objects are ‘orthogonal: while con-
ceptually constraints are viewed as symbolic expressions, the physical representation
is typically chosen to facilitate efficient storage and manipulation.

The general framework of the EOSCUBE language is the monoid comprehensions
language, in which CST objects serve as a special data type, and are implemented as
a l i b r q of interrelated C++ classes. The data model for the monoid comprehensions
is based on the notion of monoid, which is a conceptual data type capturing uniformly
aggregations, collections, and other types over which one can “iterate”. This includes
(long) disjunctions and conjunctions of constraints.

The ability to treat disjunctive and conjunctive constraints uniformly as collec-
tions is a very important feature of EOSCUBE: it allows to express and implement
many constraint operations through nested monoid comprehensions, i.e. in the same
language as hosting queries. For example, the satisfiability test of a disjunction of

‘In fact, the name EOSCUBE was originated from the shorthand C3 for Constraint Comprehen-

‘using finite precision arithmetic
3As explained in later sections, users can view the constraint layer as either calculus, or algebra,

sion Calculus.

interchangeably.

II
b
P
.-

I 46

conjunctions of linear inequalities is expressed as a monoid comprehension query that
iterates over the disjuncts (each being a conjunction), and tests the satisfiability of
every conjunction (using the simplex algorithm).

In turn, the ability to express a constraint operation as a sub-query in the hosting
query is crucial for what we call deeply interleaved optimization: it gives the flexi-
bility to reshuffle and interleave parts of the constraint algorithm (sub-query) with
the hosting query. This re-shuf€ling can be done by additional global query trans-
formations (discussed in the paper) involving approximations, indexing, re-grouping,
pushing cheaper selections earlier, replacing sub-queries with special-purpose a l p
rithms, and so forth. Figuratively speaking, constraint operations are not treated in
EOSCUBE as black boxes plugged into a query, which would severely restrict opti-
mization opportunities, but rather as white boxes with black holes.

The EOSCUBE system architecture supports:

1. Besides CST objects, any data structures expressible in C++.

2. An extensible family of parameterized and possibly nested collection monoids
currently including sets, bags, lists, as well as (long) disjunctions and conjunc-
tions of CST objects.

3. An extensible family of aggregation monoids such as sum, count, some and all.

4. An extensible family of search structures implemented as parameterized monoids
and currently including Btrees, hashing and kD-trees for multidimensional rect-
angles. Because the search structures are implemented as monoids, they can be
used uniformly anywhere in queries where monoids are allowed.

5. An extensible family of special-purpose algorithms, such as the sort-join and
the constraint join [BJM93], which are implemented as parameterized monoids.
These special algorithms are important for performance because they cannot
be matched, in terms of 1/0 complexity, by standard monoid comprehension
algorithms with dynamic buffer management (although many other algorithms,
such as the loop join and standard selections, can). Since the special algorithms
are expressed as monoids, they can be easily plugged in monoid comprehension
queries to replace equivalent sub-queries.

6. Approximation-based filtering, indexing and regrouping based on internal com-
ponents of nested collection monoids. These features are especially important
for achieving deeply interleaved optimization in presence of constraint opera-
tions.

47

7. Orthogonal features inherited from the commercial OODB Objectstore, includ-
ing persistence, dynamic buffer management, transaction management, data
integrity, crash recovery, version management, and multi-client/multi-server ar-
chitecture.

The functionality of the EOSCUBE system is a combination of the new EOSCUBE
layer and Objectstore. EOSCUBE as a virtual system (1) inherits “lower” fea-
tures of Objectstore, (2) replaces “middle” ObjectStore’s features with those of the
EOSCUBE layer, and (3) adds “upper” features of the EOSCUBE layer. The im-
plementation of the EOSCUBE layer, in turn, uses Objectstore and the linear pr+
gramming package CPLEX. We feel important to note that while EOSCUBE is a
research prototype, we believe that it is a scalable system designed to carry out im-
plementations of serious, massive data applications. That is partly due to the use of
commercially available components (i.e. Objectstore and CPLEX).

EOSCUBE, similar to Objectstore, can be better viewed as a powerful extension
of C++ with constraint database features, rather than a full-scale DBMS, and is
currently to be used from within a hosting C++ program. As a C++ extension,
EOSCUBE uses the native C++ data structures and its type system. In fact, in the
current implementation only the monoid comprehensions are precompiled, and all
the other EOSCUBE features, including the the constraint calculus, are implemented
as C++ libraries; hence the native C++ syntax is preserved.

The use of the “dirty” C++ data model, as opposed to “clean” and formally d e
fined models such as of ODMG OQL [ABD+96] or XSQL [KKS92] was our pragmatic
choice due to the intended purpose of EOSCUBE: an intermediate optimization-level
language, i.e. one in which an optimizer or a programmer can (explicitly) write
highly optimized queries, using appropriate order, nesting, special operators (e.g. for
the sort join) and built-in optimization primitives. Because of the intended use as
an intermediate language, we prefer to regain the flexibility of and the uniformity
with the underlying programming language, C++. We designed EOSCUBE to be
used both for the implementation and optimization of high-level constraint object-
oriented query languages such as Lyric or constraint extensions of OQL, and for
directly building software systems (by application or system programmers) requiring
extensible use of constraint database features.

The focal point of our work is achieving the right balance between the expressive
ness, complexity and representation usefulness [Bro] without which the practical use
of the system would not be possible. To that end, the EOSCUBE constraint calculus
guarantees polynomial data complexity, and, furthermore, is tightly integrated with
the monoid comprehensions to allow deeply interleaved global optimization.

--

48

!

I

1

I

5 CST Objects and EOSCUBE Queries by Exam-
ple

In this section we informally discuss EOSCUBE queries, including CST objects, the
constraint calculus and monoid comprehensions using an Earth image example. We
assume, briefly, that a database stores a collection of country(or county) maps, which
have extents (or shapes). It also stores an Earth image which is an 1x1 degree
resolution grid of pixels. We assume that there are parameter values (like vegetation
index, cloud amount, or see surface temperature) associated with each pixel. A
scientist then may ask queries that output spatial and temporal descriptions of areas
where the parameters satisfy a certain condition. Those queries can be compactly
answered in EOSCUBE without using user implemented predicates or functions.

5.1 Constraints, CST objects and Schema by Example
Consider application schema for our earth image example(see Appendix B). The
schema uses regular object-oriented features, and also what we call spatio-temporal
constraint (CST) classes, such as CST(Zon, Zat), which means, intuitively, a constraint
in free variables Zon and Zat. Consider also a county which is approximated by a 2D
conjunctive constraint in the latitudelongitude linear system of coordinates Zat, Zon.
For example, a constraint (formula)

with the variables ranging over reals can be viewed as a set of points

in tw*dimensional space and describes, say, the extent of a small rectangular area.
More accurately, the constraint formula (-4 5 Zat 5 4) A (-2 5 Zon 5 2) will be
interpreted as an infinite relation over the schema Zat,Zon, that contains all tuples
(Zat, Zon) satisfying the constraint.

In the EOSCUBE syntax the above formula will look as follows:

We use && and == instead of A and =, correspondingly, to preserve the C++ style.
Interestingly, the above constraint syntax is native in C++, which is achieved by

49

exploiting the C++ operators’ overloading mechanism. How this is done is explained
in more detail in Section 7.3. Users can intuitively think of a constraint with d free
variables as a (possibly) infinite relation of d-tuples, as an object in &dimensional
space (i.e. a set of points), or as a symbolic expression, interchangeably, depending on
the application and the context of its use. Thus, we will be referring to a constraint
by a generic name CST (i.e. constraint spatio-temporal) object.

5.2 EOSCUBE Queries by Example
Consider the following EOSCUBE query, yet without CST objects, which finds a bag
of all countries colored in red:

SELECT c // for f i l e cabinet
INTO (Bag<COUNTRY*>) result
FROM all-countries

// result i s a bag-collection

AS (COUNTRY*) c // iterator: f c iterates
// over BAG

WHERE c->color == “red” // predicate, i . e . condition

The SELECT clause is followed by a possibly interleaved list of the FROM-clause iterators
and WHERE-clause conditions. Any order of iterators and predicates, in which variables
are only used after they are bound is allowed. However, in general, different orders
may lead, as we shall see, to different resulting collections. In the SELECT clause we
may have any C++ expression, possibly using variables bounded in the iterators, or
invoking another monoid comprehension.

The semantics of the query is best understood, intuitively, through the follow-
ing loop program, which is a conceptual skeleton of the actual algorithm evaluating
monoid comprehension^.^

result = empty-bag;
FOREACH c IN (BAG) all-countries DO

IF c->color == “red” THEN
INSERT c I N T O result

Also important to note is that a query can be always written with just one FROM
clause containing all the iterators, followed by just one WHERE clause with all the
conditions. However, we allow any order of interleaved iterators and conditions, in

4The real algorithm also deals with many other issues such as persistence, dynamic buffer man-
agement, type management and interface with C++ etc.

50

.

!

order to control the evaluation
languages such as EOSCUBE.

! of the query, as is necessary for optimization-level

Consider an example of an earth area where its extent in latitude and longitude

is captured as the CST object (100 5 lat 5 110) A (50 5 lon 5 60) in free variables
lat, lon, i.e., of class CST(lat,lon).

area with each country, then finds VI for each intersection using the mean average,
and produces a collection of pairs containing the computed value and the correspond-
ing intersection scaled down by 2 on all coordinates. This query also shows that
constraints are used in EOSCUBE queries to manipulate, as well as express boolean
conditions on CST objects:

coordinates is the set of points { (lm, lat)1(100 5 lat 5 110) A (50 5 lon 5 60)) which

The following EOSCUBE query, for a given area, computes the intersection of this

I

i
I

CST area = (100 <= lat <= 110 && 50 <= lon <= 60 1;
!

I

1
I

SELECT pair(avg, isec.Subst(lon/lon*0.5, lat/lat*O.5))
INTO (Bag<pair>) result
FROM all-countries AS c
DEFINE isec AS (CST) c.extent && area
WHERE SAT(isec1
SELECT pix.VI INTO (AVG<real>) avg
FROM Grid AS (PIXEL) pix
DEFINE rect AS (pix.lat-0.5 <= lat <= pix.lat+O.5) &&

WHERE SAT(rect && isec)
(pix.1on-0.5 <= lon <= pix.lon+0.5)

Variable names are considered to be a part of the constraint database schema and
are analogous to attribute names in the relational model. In constraint formulas
the system joins variables that has the same symbolic name. Of course, there are
situations when explicit renaming is required to achieve our goals(for example when
making a self-join of two conjunctions). Expressions DEFINE exprl AS expr2 cause
the replacement exprl by expr2 in the remainder of the comprehension; they are used
simply as shortcuts. SAT stands for the satisfiability test of the constraint expression
inside the parentheses which checks whether rect intersects isec.

Below we describe in more detail different types of queries and their syntax.

Create-a-result query

EXEC COMPREH

51

cpp-type1 is a C++ type of the resuing monoid cpp-var-1, w-ich is allo-
cated by EOSCUBE; cpp-expr-1 must yield the type of the elements of the result;
cpp-expr2 must yield a collection monoid with element type cpp-type-2; cpp-var3
refers to cpp-expr-3 by textual substitution and can be used in the rest of the query;
cpp-expr-4 is any expression to be executed; cpp-expr-5 must yield boo1 or int types
that are used as conditions; jselectsubqueryi denotes any CCUBE query that can be
inserted into the main query; the semicolon wraps up the SELECT (sub)query

Append-teresult query

Same as the create-a-result query7 but the INTO clause omits the monoid type:

EXEC COMPREH
SELECT { cpp-expr-1 1
INTO cpp-var-1
FROM < cpp-expr-2 1 AS C cpp-type2 1 cpp-vu-2
DEFINE cpp-var-3 AS C cpp-expr-3 1
PERFORM c cpp-expr-4 1
<select,subquery>
WHERE { cpp-expr-5 >

J

END COMPREH

The resulting variable cpp-var-1 is not created here; it is assumed to have been
defined previously;

Subqueries

A subquery may be put inside another query just like another clause

52

1 '
I '

P
ii

EXEC COMPREH
. . .
SELECT . . . // main query

SELECT ... // subquery

; / / th is semicolumn wraps the inner query

...

...

...
; / / this semicolumn wraps the outer query
END COMPREH

Action queries
An action query does not create or append the result. It just executes C++

statements, indicated in the PERFORM clause. Note, there is no SELECT clause
in am action query. Action queries are typically used for modifying collections or
printing results.

EXEC COMPREH
PERFORM
FROM < cpp-expr-1 1 AS < cpp-type 1 iter-name
PERFORM < cpp-expr-2 1
END COMPREH

The first PERFORM statement without parameters indicates to EOSCUBE that it
is an action query. The second perform statement executes cpp-expr-2 for each
iteration.

. .

53

Part IV

EOSCUBE Background,
Architecture and Implementation
6 EOSCUBE Monoids and Monoid Comprehen-

sions
In this section we describe the syntax, semantics and implementation of the EOSCUBE
monoids and monoid comprehensions. The formal counterpart of the EOSCUBE
monoid comprehensions is monoid comprehensions of [FM95], which is a restricted
version of monoid homomorphisms [BTBNSl, BTS91, BTBW921 written using the
syntax of monad comprehensions [Wadgo], as is done by [BLS+94]. We first review
the formal definition of monoids and monoid comprehensions borrowing heavily from
[FM95] and [BW95].

6.1 Review of Monoid Comprehensions
BAG { c I f c t all-countries,

c->color == “red” }

This is the original monoid comprehension syntax for the first EOSCUBE query
in Subsection 5.2. Here, BAG indicates the type of the resulting collection (monoid);
f c to the left of I is what we SELECT; t is used to denote an iterator, i.e. the
statement in the FROM clause; and the rest is predicates, i.e. logical conditions
appearing anywhere in the WHERE clauses. The intuitive meaning is given by the
nested loop program in Subsection 5.2.

In addition to collections, we can also compute aggregation functions. For exam-
ple,

SUM { 1 I f c t allf i le-cabinets ,
fc->color == “red”,
dr t fc->drawers,
dr->color == “blue’ ’ }

will count the number of f ile-cabinets in the result.
More formally, a set of basic data types given, e.g., int, real and char, and a

set of type constructors, e.g., set , list, bag. A data type is defined recursively as a
basic data type or a constructed type T(a) determined by the type parameter a.

54

.

i

A monoid is a triple (T,zero,merge), where T is a data type and merge is
an associative function, of type T x T -+ T , with left and right identity zero.
For example, sum = (int,O,+) is a monoid. A collection monoid is a quadruple
(T(a) , zero,unit,merge), where (1) T(a) is a constructed type determined by the
type parameter a, (2) (T(a),zero,merge) is a monoid, and (3) uni t is a function
of type a + T(a). As an example, (Zist(int), [I, f, ++), where [I is the empty list,
f(i) = [i] for each i and ++ is the concatenation operation on lists.5 Finally, a
primitive monoid is a quadruple (T, zero, uni t , merge), where (T, zero, merge) is a
monoid and un i t is the identity function of type T + T. Examples of primitive
monoids include prod = (int, 1, id, *), where i d (i) = i for each integer.

Intuitively, a monoid M = (T,zero,merge) is an abstract definition of a data
type. Collection monoids capture the bulk types, and primitive monoids capture the
basic types. Each instance of the collection type M = (T(a), zero, unit , merger) is
expressed as compositions of functions zero, un i t and merge on instances of type
a. As an example, the monoid (list(int), 0, f, ++) given earlier defines a data type
of the integer lists. An instance of the type is intuitively a list of integers and the
list is expressed as a composition of functions [I, u and ++ applying on integers. For
example, the list {1,2,3,1} can be expressed as + + (u(l), + + (u(2), + + (u(3), + +

A monoid (T, zero, merge) is called commutative (idempotent, resp.) if func-
tion merge is commutative (idempotent, resp.). For example, the monoid sef‘ =
(se t (a) , {}, f’, U}, where f‘(i) = (i} for each instance i of type a, is a commutative
and idempotent monoid, and bagB = (bag@), g 1, f”, O), where f”(i) = ai] for each
instance i of type p and 0 is the additive bag union, is a commutative monoid. In-
tuitively, less properties correspond to more structure. For example, the monoid bag
has more structure than the monoid set because repetitions in a bag do matter (since
it is not idempotent), whereas in a set do not (since it is idempotent). Similarly, the
monoid list, being not commutative, has more structure then the monoid bag, which
is commutative. For monoids M and Af, we say Af 3 M if that Af is commutative
(idempotent, resp.) implies that M is commutative (idempotent, resp.), i.e. N has
the same or less properties than M. This exactly corresponds to the intuitive notion
that Af has more structure than M. It is easily seen that bug@ 5 setQ. IfN 5 M ,
then an instance of type Af can be “translated” deterministically, by using the merge
function of the monoid M, into an instance of the type M, but not necessarily vice
versa.

Queries on monoids are expressed as monoid comprehensions. A monoid compre-
hension over the monoid M takes the form

(u(l), U)))).

. --

M { e In,... ,rn)

5We use [q,. . . ,on] to denote a list and {,I,. . . ,a) to denote a bag.

55

where e is an expression called the head of the comprehension, and 7-1, . . . , rn is a list
of qualifiers, each of which is either

0 a iterator of the form v t e', where v is a variable, and e' is an expression that
evaluates to an instance of a collection monoid of type which is 5 M or

0 a selection-predicate, which is an expression that evaluates to t rue or f a l se .

The expressions in turn can include monoid comprehensions. An important condition
for the monoid comprehension is that for each 1 < i 5 n, each free variables (i.e., free
variables in the expressions and predicates) appearing in ri, . . . , T, must appear as
the variable of an iterator among rl, . . . , ri-1, and each free variables in the e must
appear as the variable of a iterator among TI, . . . , rn.

It is assumed that each instance of a monoid appearing as argument in a monoid
comprehension is represented as an expression involving merge, un i t and zero func-
tions. For example BAG& 2,1,3} can be represented as

merge(merge(unit(l1 ,un i t (2)) ,
merge(unit(1) ,unit(3)))

or, since merge is associative and zero is a left (and right) identity, as

merge(merge(merge(merge(zero,
u n i t (l > > ,

uni t (2) 1 ,
unit(l)) ,

u n i t (3) 1

We will assume that every monoid instance is (conceptually) represented this way,
and, thus, the notation N { U ~ , u2,. . . , a,} will denote the expression

merge(. . . merge(merge(zero,unit(al)) ,unit(a,)), . . . ,unit(a,,>>

Furthermore, N { } , and N(u1, u2,. . . , h} where n = 0 will both denote zeroN,
i.e. the empty monoid instance.

A monoid comprehension M over a monoid M = (T, zero, unit , merge)(collection
or primitive), defines an instance of type T by first initializing r e su l t with zeroM,
and then invoking the procedure inser tJC(resu1t ,M) defined recursively by the
following reduction rules:

implementation.
definition here is different from, but equivalent to the original one; ours is closer to the

56

I
1
I
1
1
I
I
I
I
I

(rl) insertJC(resu1t ,M{e 1))

(r2)

(r3)

(r4)

-+ result := mergeM (result ,unitM (e))
insertMC(resu1t ,M{e I false, 3)
-+ n i l (i.e. do nothing)
insertJC(resu1t ,M{e I true, 3)
-+ insertAC(resu1t ,M{e I 3)
insertMC(result, M{e I x t n/ (a l , . . . ,an} ,?)>
-+ for i = 1 to n do insertJC(resu1t ,M{e I ?) [x / u ~])

where h/ is a collection monoid (S, zeroN, unitN, mergeN) with the condition n/ 5
M . Note that M{e I ?')[x/ui] denotes the replacement of x with ai in M (e I ?).
Note also that the last rule is deterministic as far as the resulting monoid instance is
concerned.

6.2 Monoids in EOSCUBE
To understand the minimum requirements for primitive and collection monoids, con-
sider the recursive rules defining the result of a monoid comprehension. For the
monoid M to appear in the result of the monoid comprehension, we only need to (1)
use zeroM and (2) know how to perform

result = mergeM (result ,unitM (e))

which is, in fact the insertM(result,e) operation (i.e. wk define insertM this
way). In order for the collection monoid h/ to appear inside the comprehension, we
only need to be able to itenzte over N(a1,. . . ,a,}, i.e. to perform the for loop.

The representation (and implementation) of collection monoids in EOSCUBE is
based on two C++ template classes, parameterized with the type A of collection
elements: CollectionMonoid and Iterator:

template < c lass A > class CollectionMonoid
<
friend c lass Iterator<A>;
public :

CollectionMonoidO ; // C++ constructor used as zero
virtual void Insert(A&) = 0;
virtual Iterator<A>* CreateIteratorO = 0;

private : // spec i f ic subclasses contain

'For a primitive monoid the name insert is probably strange; we really mean by
insert exactly result := merge(resu1t ,unit?" (e)). For example, for primitive monoid sum
(int, +, 0, identity), insertM (result ,5) is result :=result+ 5.

57

Figure 2: Collection Monoids in EOSCUBE

// actual implementation
I.;
The class CollectionMonoid reflects the minimum requirements: it has zero, imple-
mented as a class constructor, and Insert and CreateIterator member functions.
An Iterator object, created by CreateIterator, has First, More and Next mem-
ber functions which can be directly used in the C++ for-loop. Specific collection
monoids implemented in EOSCUBE, depicted in Figure 4, are implemented each
with two classes derived from the classes CollectionMonoid and Iterator, come
spondingly. The collection monoids list, set, and bag are currently implemented
using the Objectstore collections.

As opposed to collection monoids, primitive ones only require zero and the insert
member function, since they are not used in the query iterators.

template< class T > class PrimitiveMonoid
<
public :
PrimitiveMonoid(); // Note: creates zero of monoid
virtual void Insert(T&) = 0;
operator T 0 ;
static T zero;

protected:
T value;

IPI
111
P
L
@

58

1
1
I
I
I
I
1
I
I
I
1

Pd-Zb M a x 6 Sum& . . .(auxil;uY w *mplates). . .

p kF*tew ’\ \
............. Some All , . .(other monoids or monoid templates). . . sllm.Int

Figure 3: Primitive Monoids in EOSCUBE

The extensible family of primitive monoids and monoid templates in EOSCUBE,
depicted in Figure 5, includes Prod<T>, Maxc’D, Sum<T>, Some and All. Note, that
the type used in Some and All is bool. These monoids work as disjunction and
conjunction of conditions, respectively.

6.3
The syntax of the EOSCUBE comprehensions has been explained by examples. More
accurately, it is of the form:

Syntax and Semantics of EOSCUBE queries

SELECT C++expr
INTO [(monoid,type)l [result]

[f rom-where-def ine-perf om-list]
X [from-where-def ine-list]

C++expr in the SELECT clause is an arbitrary C++ expression that evaluates to the
type of result s elements. Note that C++expr may involve variables instantiated
in the FROM clauses and may also contain nested monoid comprehensions. The
first .(optional) parameter in the INTO clause specifies the type of result. If this
argument is omitted, the system assumes that result is defined elsewhere in the
C++ program. When the monoid comprehension is nested, result argument may

59

be omitted. The from-where-def ine-perform-list is a sequence of the FROM,
DEFINE, PERFORM and WHERE clauses (explained earlier by examples) in any
order. Note that any number of iterators, separated by commas, may appear in each
FROM clause; further, any number of predicates (conditions) may appear in each
WHERE clause. Also important is that nesting is recursively allowed anywhere in
the monoid comprehension, provided that nested monoid comprehensions return ap-
propriate types. For instance, collection monoid comprehensions may stand anywhere
a collection monoid can; or, monoid comprehensions returning TRUE or FALSE may
stand in place of any predicate. This flexibility also enables the use of special a lge
rithms (such as for the constraint and sort join, indexing or regrouping), provided
that they produce the appropriate types (e.g. collection monoid) as their outputs.

The semantics of EOSCUBE monoid comprehension queries is defined by the
corresponding formal monoid comprehension. Furthermore, the basic evaluation is
by the nested loop algorithm with dynamic buffer management. Important, however,
is that the nested monoid comprehension in the FROM clause does not create physical
intermediate results, but rather supports the pipe-lining.

7 CST Objects and Constraint Calculus

7.1
EOSCUBE uses the multi-typed algebra framework of [Bro], which we review here.
As seen in the examples, the notion of CST data relies on a simple and fundamental
duality: a constraint (formula) 4 in free variables 21,. . . , x, is interpreted as a set of
tuples (al , . . . , G) over the schema 21, . . . , z, that satisfy 4; and, conversely, a finitely
representable object in (q, . . . ,x,) space can be viewed as a constraint. That is, the
syntax is constraints, i.e. symbolic expressions; the semantics are the corresponding,
possibly infinite, relations.

CST objects are represented by a sub-family of the first order logic, (i.e. with
the logical connectors A, V, 7 and 3) and by a family of atomic constraints, such
as linear arithmetic over reals, polynomial or dense order. CST objects are ma-
nipulated by means of a constraint algebra, whose operators are expressed using a
sub-family of the first-order logic, renaming of variables, and atomic (e.g. arithmetic)
constraints. For example, if P and Q are CST objects in 21,. . . , x,, their intersection
can be represented by P A Q; union by P V Q; the test of containment of P in Q by
Vxl,. . . ,Vz,(P + Q) (this is, in fact, the entailment test, ENTAIL); emptiness of
P by 13z1,. . . ,32,P (this is, in fact the satisfiability test, SAT); disjointness of P
and Q by 13x1,. . . ,3x,(P A Q); the projection of P on axes 21,. . . ,xi, 1 I i < n,
by 3zi+l. . .3z,P etc. If we only use linear constraints over reals, as implemented in

Framework for Constraint Algebra and Calculus

60

P
I
B
PDI
II

II
1
D

m

.

EOSCUBE, within the first-order logic we can express any linear transformation such
as rotation, translation and stretch; check convexity, discreteness and boundness [?I;
compute the convex hull, augment objects, change coordinate systems; etc.

Thus, constraint objects can be manipulated by a very expressive language. More-
over, since this language uses only a small number of operators (i.e. logical connectors
and quantifiers), it is also very compact, as compared to using a separate operator
for each specific type of transformation, which is typically done in extensible or spa-
tial database systems. It is also claimed, that for linear constraints, query languages
manipulating constraint objects are deeply optimizable, in terms of indexing and fil-
tering (e.g. [BLLM95, KRW93, Sri92]), and constraint algebra algorithms and global
optimization (e.g. [BJM93, GK951).

More specifically, constraint algebras operate on a family 3 of canonical represen-
tations of constraint expressions (objects). For constraint objects Cl, . . . , C, a first-
order logic formula #(C17.. . , Cn) such as 3y(Cl[u1/y, q /2] A . . . A C,[u,/y, v,/z]),
where [u i /y , v~/z] denotes the variable replacement, defines the following constraint
algebra operator op: (1) replace each Ci by the corresponding constraint expression,
(2) do all variable replacements and (3) transform the resulting constraint expression
into the required (equivalent) canonical representation in 3. Thus op can be seen as a
function from 3 x . . . x 3 to 3. On the other hand, the operator op has the interpre-
tation Z(op), which is a query that maps n relations to one. Given Z(Cl), . . . ,Z(C,),
where Z(Ci), 1 5 i 5 n, is the relational interpretation of Ci and q, . . . , xm are all
free variables, Z(q) computes the following relation:

((21, . . . , G r a) I Wl, * - - , Cn))
Clearly, the duality between constraints and point sets carries over to the constraint
algebra/calculus, that is, the following commutative property holds:

Z(qP(C1,. - - , Cn)) = Z(.P)(Wl), - * - , W n))
A constraint family 3 is defined by choosing (1) an atomic constraint domain, (e.g.

polynomial over reds or linear over integers), (2) the structure of the logical formula
allowed (e.g. disjunction of conjunctions or existentially quantified disjunction) and
(3) the required canonical form (e.g. whether to eliminate existential quantifiers,
eliminate each redundant disjunct, extract all implicit equalities in conjunction or
eliminate redundancy in conjunctions). The definition of a constraint algebra amounts
to choosing the structure of first-order formulae and the atomic constraints allowed
in the query.

The challenge here (and a major area of research) is the development of constraint
families and algebras, that strike, for each application realm, a careful balance be-
tween (1) expressiveness, (2) computational complexity and, very importantly, (3)
representation usefulness.

61

As one extreme, if the entire first-order logic (as studied in [?, ?I), and the same
atomic constraints are allowed in both the constraint family 3 and the dgebra, we get
a very expressive algebra with the Iow data complexity, since no actual manipulation
of constraints would be required. However, the representation of the result might
consist of a very large unsimplified constraint expression that might not be useful for
the user. For instance, the answer to a query “is constraint object C empty” would
be 321 . . . h n C , where 21, . . . , xn are dl free variables, whereas the user expects a
true or false answer.

An example of a very expressive, but having high (exponential) time data com-
plexity is the DISCO (Datalog with Integer and Set order Constrains) query language
[BR95]. Constraint representation is DISCO is useful in many, but not all applica-
tions. For example, to express satisfiability of a simple propositional formula, the
user needs to encode the formula by a datdog (with constraints) program, in a fairly
unnatural way.

Close to the other end, the framework [?] requires a fairly restricted subfamily
of first-order logic in constraint objects: disjunction of (unquantified) conjunctions of
atomic constraints (the algebra, however, allows more, including quantifier elimina-
tion). This representation is useful for many, but not all applications: for example a
constraint representation of a triangle given by vertices (u l , b l) , (k, b), (us, b3),

is not directly representable in that framework. Still, for some atomic constraint
families, such as linear inequalities over reals, this framework may be computation-
ally unmanageable: the quantifier elimination may result in a constraint exponential
in the size of the original conjunction, although for many subfamilies more efficient
algorithms were developed (e.g. (GK95, JMSY92, HLL90, LL911). A more flexible
first-order logic structure that allows the entire linear constraints over reals while
controlling computational complexity was described in [BJM93, BK951.

--

7.2
In EOSCUBE we concentrate on linear constraint over reah, which are expressive
and useful in a variety of application domains. However, in order to control the
computational complexity, we design a more flexible first-order logic structure by
constructing a number of interrelated constraint families. This continues the line of
work in [BJM93, BK95].

The six interrelated constraint families in EOSCUBE are depicted in Figure 6.
The four main families are for unrestricted linear constraints over reds: C L I N , for

EOSCUBE Constraint Families and Canonical Forms

62

Figure 4: Families of CST Objects

& ..(my)

Conjunctive Linear, stands for constraints represented in the form Ar=lCi, where Ci
is a linear inequality; ECLIN, for Existential Conjunctive, corresponds to the form
%-A?=, Ci; D C L I N , for Disjunctions of Conjunctions, corresponds to the form VzlAAj”,l
Cij; and DECLIN, for Disjunctions of Existential Conjunctive, corresponds to the form
3Z VEl A:=lCij. The other two families are for range constraints, i.e. of the form
u op x op b, where op is either < or 5 and u and b are either real numbers or -00

or 00. Namely, C-GE, for Conjunctive Range, stands for constraints represented
in the form Ar=lCi, where Ci is a range constraint; and DCJUNGE corresponds to the
form Vzl Cij-

for
projection. We distinguish between projections on one variable, denoted (one) ; on
zero attributes, denoted (), i.e. all free variables are existentially quantified; on all
variables, denoted (all+>, i.e. no variables are quantified; and, on any number of
attributes, denoted (any), for arbitrary projection. The user is recommended to use
the most specific projection operator in order to achieve the strongest (i.e. lowest)
resulting types.

We use the EOSCUBE notation for operations: not, &&, I I , and (. . .I

63

Not only the projections in EOSCUBE can eliminate existing free variables, but
they can also add new ones. For example, a CST (1 <= x <= 5) can be transformed
by the ”projection” on (x,y> into (x ,y> I (1 <= x <= 51, thus adding the new free
variable y, and getting a new interpretation as a relation over x,y of all tuples with
x as required and an arbitrary real number y. However, in the classification of the
projection cases discussed earlier, we only consider free variables physically appearing
in the constraint expressions.

Thick arrows indicate type hierarchy. For example, C L I N is a sub-type of D C L I N ,
E C L I N and, transitively, D E C L I N , meaning that a CST object of type C L I N may be
used as an argument wherever its supertypes are allowed.

Thin arrows indicate, for each constraint family, the allowed operations and the
type of the result, which may belong to a different constraint family. For example,
&& is allowed on C L I N , returning the result in the same family, while (), and (one)
return the result in C N G E (which is also in C L I N as a supertype of C U N G E) . Note,
that the result of I I on arguments from C L I N will be in D C L I N , not in C L I N . Some
of the operations are implicit: for instance, while I I does not explicitly appear in
C L I N , it can be applied since it is allowed for its supertype D C L I N .

Operators may be overloaded: for example && in C L I N is different from && in
D C L I N ; they are implemented differently and return the results of different types
(with different representations). The actual operator applied depends on the types
of its arguments. As an example, &&(CLIN,C_LIN) will use the C L I N operator;
whereas, &&(DC_LIN,DCLIN) , as well as & & (C L I N , D C L I N) Will use the operator from
D C L I N . In general, for the application of op(arg1 ,arg2) we use the lattice structure
of the type hierarchy, where sub - type 5 super - type (i.e. the higher the bigger).
The actual op chosen is the one of the CST type that is the least upper bound of
type (argl) and type (arg2) on which op is defined. Note, that the CST families are
constructed in such a way that, for every op used, such least upper bound, if exists,
is unique; hence, there is no ambiguity. If no such bound exists, op is not allowed on
argl and arg2 and would result in a compile-time error.

For users of the EOSCUBE CST library it is easy to remember what’s allowed
and what’s not. &&, I I , and (> c m be freely applied on arguments of any CST family.
Only not is restricted: it can only be applied to arguments of the type C L I N (and
thus its subtype CJUNGE). The system will always produce the strongest (i.e. least)
type possible for the resulting constraint.

In addition to the logical algebraic operators, all families have the following oper-
ators:

1. RENAME(CST-obj , ” x l / e l , . . . , x N / e N ”) where x l , . . . , x N are the names of

2. SAT(CST-obj) to check satisfiability of the argument, i.e. whether there exists

the variables to be replaced with the variables e l , . . . , e N .

64

1
I
1
1
1
1
1
1
I
I
I

an assignment of real constants into its free variables that makes it true. There
is also MUTSAT (CST-ob j -1, CST-ob j -2) which is equivalent to SAT (CST-ob j -1
&& CST-obj 2).

3. TRUTH_VALUE(VarJssig,CST-obj) returns the truth value of the CST under
the assignment VarJssign of constants into the CST-obj free variables.

4. MINPOINT (lin-f unc , CST-ob j) and MAXTOINT (l i n f u n c , CST-ob j) where
l i n f u n c is a linear function with real coefficients. Returned is the assign-
ment of constants into the variables of l i n f u n c that maximizes it subject to
the constraints in the CST.

5. MIN(varname,CST-obj) and MAX(varname ,CST-obj) that return MIN and
MAX of the first argument subject to the constraints in the second.

Note that the MIN and MAX operators correspond to the problem of linear program-
ming. In addition, ENTAIL(DCLIN, CLIN) operator is allowed'.

Finally, since all the disjunctive CST objects can be considered as collections of
disjuncts and all the conjunctive CST objects as collection of conjuncts, we make these
CST families EOSCUBE collection monoids by implementing the required iterators
and member functions.

The six CST families are carefully constructed with the complexity consideration
in mind as follows. First, all operations allowed on the families have polynomial data
complexity. This is the reason, for example, that C L I N is not closed under the general
projection: transforming the result into C L I N will require quantifier elimination and
thus the size of the result (and, of course, time complexity) may be exponential in
the number of variables eliminated. Whereas, ECLIN is closed under the general
projection since the general projection in ECLIN is lazy: ECLIN allows quantifiers in
the internal representation and hence no physical quantifier elimination is performed.
Similar, not is allowed on conjunctive CST families, C U G E and CLIN, but not on,
say, D C L I N . The reason is that transforming an expression of the form 1 V A C or,
of the form A V lC, into D C L I N may result in an expression of an exponential size,
which we would like to avoid. We discuss what operators involve computationally in
more detail in the next subsection.

The CST families use canonical forms, i.e. useful standard forms of constraints,
that we adopt in EOSCUBE from [LHM89, BJM931 and review here from [BJM93].
For CST objects in the disjunctive families, some disjuncts might be redundant in the
sense that omitting them results in an equivalent constraint. Clearly, a canonical form
that eliminates such disjuncts would be desirable. However, the problem of detecting

'

*and, of course, for all subtypes of C l I N and DCLIN

65

such tuples is co-NP-complete [Sri92], and so we will perform only one simplification
of disjunctions: the deletion of inconsistent disjuncts.

For CST objects in the conjunctive families, there are a number of simplifications
that can be requested by the user. One choice is to write all the equations in the
form {xi = t i I i = 1,. . . , n} where xi’s are distinct and appear nowhere else in
the constraint. A second choice is whether all equations which are implicit in the
inequality constraints should be represented explicitly. (As a simple example of this,
consider the constraints x + y 5 2, x + y 2 2.) A third is the extent to which redun-
dancy within the inequalities should be removed. [LHM89] presents a classification
of redundancy that suggests simple forms of redundancy removal. A fourth choice is
whether to keep the inequalities in a different form, such as the simplex tableau form.
In the current EOSCUBE implementation, the only simplification is the removal of
inconsistent disjuncts in the disjunctive families; however, a range of simplifications
on the conjunctions is presently being implemented.

7.3 Implementation of CST families
On the conjunctive families, the && operator simply combines its arguments and is
constant time; (one) I C, which is a projection on a single variable, involves apply-
ing a linear program (using the simplex algorithm of CPLEX) twice for finding the
minimum and the maximum of the variable subject to C; 0 IC, which is eliminating
all variables in C works as a satisfiability test, using the first phase of the simplex, as
does the SAT predicate.

On the disjunctive families, the I I operator is constant-time, while D1 && D2,
where D1 = Vi=l...nCli and 0 2 = Vj=l...mC2j is more involved:

D l A D 2 = V C l i A V C2j= V (CliAC2j)
i=l, ... ,n i=l ... m i=l ... n j = l ... m

that is, the result consists of all combinations of Cli and C2j that are mutually
consistent (Le. their conjunction is satisfiable). Since the CST families are monoids,
D1 && D2 is implemented as the following EOSCUBE query:

SELECT *c l && *c2
INTO (DEC-LIN) conj,Dl,and,D2
FROM D l AS {EC,LIN*) c l ,

D2 AS CEC,LIN*) c2
WHERE SAT(*cl ,*c2)

We show how such queries are optimized using the approximation-based filtering,
indexing and regroupings in the next section. Similar, SAT(D) , where D is of the type
DECLIN (as well as other disjunctive families) is represented as

i
D
I

II
I
1
L
I
I
I

66

SELECT SAT(*c)
INTO (Some) satisf-flag
FROM D AS (EC-LIN*) c

Note, that c is of the type E C L I N and so SAT in the WHERE clause works on
conjunctions. Further recall that Some is a primitive monoid whose merge operator is
a logical or; thus, the satisf-f l ag will be true if and only if at least one component
is true. Finally, ENTAIL(D, C) , where D is D C L I N and C is C L I N , is represented as

SELECT ENTAIL(*c,C)
INTO (Some) imply-f l ag
FROM D AS (C,LIN*) c

Beyond the algorithms for constraint operations discussed, there are two subtle design
problems that we address in EOSCUBE: compile-time maintenance of the type lattice
and a lazy evaluation. Support for the lazy evaluation of constraint (i.e. involving
CST) expressions is necessary for efficiency. For example, if we are interested in
the SAT test of an expression involving logical connectors, it is typically wasteful to
perform simplifications of subexpressions.

To exemplify the problem arising from the type lattice maintenance, consider the
&& operator. In fact, while && has one conceptual meaning, it works differently in every
CST family. Moreover, since && is defined on DECLIN, the arguments may be any
subtypes of DECLIN. Thus, every ordered pair of (sub) types for arguments of && works
uniquely: we need to find the least upper bound type, to perform corresponding type
conversions, and then to apply the physical algorithm of the resulting CST family.
One possibility is implementing a separate function for each pair of subtypes, but
this would result in a quadratic number of functions for each logical operator: 30 for
the six families, and impractically many for future extensions of EOSCUBE with new
CST families. On the other hand, the direct implementation of a subtype relationship
using the C++ inheritance mechanism does not work, since each family has its own
implementation, data-structures etc, which should not be inherited by its subclasses.
Of course, there is also a possibility of maintaining just one global CST type, and to
distinguish individual subfamilies only at run time. This, however, would eliminate
the capability of the compile-time type checking, an important feature of EOSCUBE.

To solve the type lattice problem we designed a two-layer architecture for the
CST families: the lower layer, called basic-CST, supports the physical representation
and manipulation of the CST families; the upper layer, called lazy-typed-CST, is
responsible for the type lattice management and the lazy evaluation, while the actual
evaluation is passed to the lower, basic-CST layer.

The basic-CST layer is composed of the six classes basic-CLIN, basicDCLIN
etc., each maintaining its own data structures to represent the underlying constraints;

67

and one super (base) class, basic-CST. No automatic type casts are supported on this
layer. However, each basic family has member functions for explicit type conversions
into basic types that are higher in the type hierarchy. For example, transforming
basic-CLIN into basicDCLIN creates a basicDCLIN object (disjunction) that has
a single disjunct in it.

The lazy-typed-CST layer, on the other hand, does support automatic sub-typing
and the ability to determine the least upper bounds of operators’ arguments at
compile-time. The six families lazy-typed-CLIN, lazy-typedDCLIN etc., are imple
mented as six classes with a class hierarchy that exactly matches the type hierarchy of
the CST families. However, all the lazy-typed classes have similar internal represen-
tation, which is inherited from the abstract class lazy-typedXST. The representation
is basically an expression tree (hence “lazy”), with internal nodes storing the con-
straint operators (such as && or I I) and encoding the strongest type to which the
subtree can be converted; the leaves are objects of the lower layer, basic-CST. It
is important to emphasize that the CST type checking we do in EOSCUBE heav-
ily uses capabilities of C++ and would be impossible (at compile-time without any
precompiling) in languages such as C.

The EOSCUBE system also supports two generic parameterized CST families:
Gen-Conj<T> for generic conjunctions and GenDis j <T> for generic disjunctions, where
T is an arbitrary, possibly complex, CST type. Both are collection monoids and sup
port the TRUTH-VALUE function; further, SAT is supported by GenDis j<T> provided it
is supported by T. Also ENTAIL(GenDisj<T>,T) is defined provided it is defined on
T. These operations are represented again with monoid comprehension queries. For
example, SAT(D), where D is of the type GenDisj<T>, is represented as

SELECT SAT(c)
INTO (Some) satisf-flag
FROM D AS (TI c

Finally, we explain how the native C++ syntax is preserved in constraint formulas,
such as in 2 <= z <= 5 && x + z <= 7. The logical connective && is supported
by the C Z I N class. In turn, each of the C++ expressions 2 <= z <= 5 and x +
z <= 7 must yield an object of type C L I N . This is done by overloading operators
<= and +. Clearly, in such an expression, x and z must be C++ variables that have
already been declared within an appropriate C++ scope (the usual C++ scoping rules
apply). The type for the C++ variables x and z is a special class, called CST-Var,
which keeps inside the a constraint variable name, i.e. a string. It is convenient,
although not required, to use the same name for a constraint variable name and the
corresponding C++ variable into which the constraint variable is assigned. Each
CST object keeps inside its free constraint variables that can be also shared among
different CST objects.

68

I

I

!
!I

:i

1

b

8 Optimization by Approximation-based Filtering
and Indexing

General optimization of object-oriented queries (e.g. ENCORE [Zdo89], 0 2 [ea90],
POSTGRESS [SRHSO]) and monoid comprehensions in particular, (e.g. [FM95]), as
well as optimization in presence of expensive predicates [CS93, HS931 is outside the
scope of this paper; We concentrate here on approximation-based filtering, regrouping
and indexing [BW95], that EOSCUBE is designed to support. More specifically,
we describe, mostly by examples, the EOSCUBE primitives for upprozimution and
inverse groupings [BW95] and indices and special purpose algorithms.

To understand the idea, we use a modification of an example from [BW95] of the
query: “find all trajectories passing over the Fairfax county”. It will be assumed here
that a set of 4D aircraft trajectories as well as a map is stored in the database. A
trajectory is assumed to have a piecewise linear representation, i.e. it is represented
as a D C L I N CST object

Where x, y, z are variables for a location, t is a time variable, and ti-1, ai,1, bi,l,
bi,2, ~ i , 3 , bi,3, 1 5 i 5 n, are constants. Note that for each i, (ti-1 5 t < ti A z =
ai,lt + bi,l A y = ai,2t + bi,2 A z = ai,$ + bi,3)} describe the movement equations for
the time interval [ti-l, ti), for the constant 3-D velocity vector (%,I, ~ i , 2 , %,3), starting
from the point (bi,l, b i , ~ , bi,3). All-trajectories is a variable of type SET<DC_LIN*>,
i.e. a set of pointers to trajectories. The Fairfax county is assumed to be represented
as a polygon: i.e. as a C L I N CST object Fairfax-area in variables x and y. The
query can be directly expressed in EOSCUBE as --

SELECT traj
INTO (Set<DC,LIN*>) result
FROM All-Trajectories AS (DC,LIN*) traj
WHERE MUT,SAT(*traj, Fairfax-area // Note: MUT-SAT

// on DC-LIN

or, if MUTSAT is expressed, in turn, as a monoid comprehension:
1

SELECT traj
INTO (Set<DEC,LIN*>) result
FROM All-Trajectories AS (DC,LIN*) traj

fact, it is not convex, but we’ll assume that to simplify the example

69

Trajectories XY-Segments Rectangles

Figure 5: Inverse and Approximation Grouping

WHERE SELECT MUT,SAT(*segment ,Fairfaxarea)
INTO {Some) // on C-LIN
FROM *traj AS {C,LIN*) segment

// Note: MUT-SAT

// SELECT returns
// True of False

which is an expensive query if evaluated directly.

Inverse Grouping(1G)
To optimize the last query, we can first use the inverse grouping, described graphically
in Figure 7. Intuitively, each trajectory can be viewed as composed of 4D-segments,
and each segment has a projection, say an xy-segment on the horizontal plane x,y.

Now, consider a collection of all xy-segments that originate from all the tra-
jectories. The inverse grouping primitive tracks back, for each xy-segment in the
collection, the set of all the trajectories from which this xy-segment came.

The correspondence between an xy-segment and the set of trajectories is c a p
tured through a parameterized C++ class GPaircTl ,T2> which represents a pair
containing a reference to an object of type T1 (C L I N * in our case) as its first
element and a reference to a set of objects of type T2 (DCLIN* in our case) as its
second element. The inverse grouping is captured through a special C++ class which
essentially represents a set of GYair-s. To create an inverse grouping the user must
create an instance of that class, passing the original collection as a constructor pa-

70

I

rameter. Assuming that All-Traj-IG has been created as the inverse grouping for
the All-Traj collection, we can now rewrite the previous query as follows:

SELECT traj
INTO (Set<DC-LIN*>) result
FROM All-Traj-IG AS <G-Pair<C,LIN*,DC,LIN*>*) G-pair
//
DEFINE xy-segment AS CC,LIN*) G-pair->first
WHERE MUT,SAT(*xy,segment, Fairfax-area)

DEFINE trajectories-of-xy-segment

FROM *trajectories-of-xy-segment AS (DC-LIN*) traj

// Note: MUT-SAT
// on C-LIN

AS (Set<DC,LIN*>*) G-pair->second

First note that the new query is equivalent to the previous one. The reason is
that a trajectory passes over the Fairf ax-area if and only if one of its xy-segment
intersects the Fairfax-area. The new query, however, is likely to perform better.
Note that different trajectories may “share” the same xy-segment, for example if one
passes exactly above another. Therefore, the previous query will apply the MUTSAT
(i.e. intersection) test multiple times for every shared xy-segment. Whereas, in the
last query we eliminate such duplication by checking MUTSAT for each xy-segment
only once and then quickly retrieving the corresponding trajectories using the inverse
grouping.

Approximation Grouping(AG)
Even though we have .minimized the number of the MUTSAT checks, we know that
MUTSAT on CLIN is relatively expensive. To optimize further, we can approximate
each xy-segment with a minimum bounded box (MBOX), which is of type CJUNGE.
Then, before testing MUTSAT on CLIN it can be tested first on MBOXes, which is
cheaper. Also, it opens opportunities for indexing. This is the purpose of the up-
proximution grouping primitive, which we introduce next. Intuitively, approximation
grouping takes a collection of objects and creates another collection. The elements of
the latter are approximations of the objects from the original one (see dashed lines in
Figure 7). The approximation grouping, similar to the inverse one, must track back,
for each approximation, the set of original objects that yield this approximation.

The implementation of the approximation grouping is similar to that of inverse
grouping. It uses the same class CSaircTl, T2> which now represents the relation-
ship between an approximation and the corresponding objects. The approximation
grouping is constructed by creating an object of a special class, passing the original

71

collection and the approximation method as constructor parameters. As in the case of
inverse grouping, the object being created represents a set of GYair-s. To continue
the optimization of the last query the original collection in our case would be the
inverse grouping collection All-Traj-IG. Recall that All-Traj-IG is a set of inverse
grouping pairs GYair<C-LIN* ,DC_LIN*>. If we define an approximation of an inverse
grouping pair as an approximation of its first element (i.e. xy-segment) then we
can create an approximation grouping object All-Traj-IGAG which would be a set
of GPair<CRANGE*, GSair<C_LIN* , DC_LIN*>*>-s.

We can now rewrite the last query as follows:

SELECT traj
INTO (Set<DC,LIN*>) result
//
FROM A11,Traj -1G-AG AS (G\-Pair<C,RANGE*, G\,Pair<C\,LIN*,

DC\-LIN*>*>) AG-pair
DEFINE min-box-of ,xy,segment AS {C-RANGE*) AG-pair->f irst
WHERE MUT,SAT(*min-box,of -xy-segment // On C-RANGE;

min-box-of -Fairf ax) // precomputed outside
// of the query

DEFINE Candidate-Traj ,IG AS CSet<G,Pair<C,LIN* DC-LIN*>*>*)

//
AG-pair->second

FROM *Candidate,Traj ,IG AS (G-Pair<C-LIN* ,DC-kIN*>*) IG-pair
DEFINE xy-segment AS {C,LIN*) IG-pair->first
WHERE Mut-Sat (*xy,segment , Fairf ax-area

DEFINE trajectories-of-xy-segment

FROM *trajectories,of,xy,segment AS traj

// Note: MUT-SAT
// on C-LIN

AS {Set<DC,LIN*>*) IG-pair->second

Indexed Approximation Grouping(1AG)
The last query involves the retrieval of rectangles that are mutually consistent with a
given one. Another optimization possibility is to maintain an index on the collection
of rectangles. This is done using the indexed approximation grouping, instead of the
approximation grouping. The IAG has the same functionality as the approximation
grouping with the following differences: 1) the first element of an IAG pair is always
a rectangle (i.e. of type C M G E) and 2) there is a kD-tree index imposed on the
rectangles. The IAG is constructed by creating an object of a special class which, in
addition to the approximation grouping functionality, contains member functions for

72

3
3
I
11;1
u
L

L

!
!'

search. In our example we create an indexed approximation grouping object named
All-Traj-IC-IAG . As in the case of approximation grouping, All-Traj-IG-IAG is
a set of GPair<CR.ANGE* ,GPair<CLIN* ,DCLIN*>*>-s. In the query we invoke the
MUTSAT(C_RANGE) method on that object. The method returns, for each MBOX (of
type ClANGE), the set of all GSairCC_LIN* ,DC_LIN>*-s for which the corresponding
rectangles intersect that MBOX.

Note, that the returned set is not a physical set collection, but rather a structure
allowing to iterate over its elements (and thus no intermediate evaluation is neces-
sary when used within monoid comprehension). The last query can be rewritten as
follows:

SELECT traj
INTO (Set<DC,LIN*>) result
//
FROM A11,Traj ,IG,IAG . MUT-SAT (min-box-of ,Fairfax)
//
FROM . *Candidate,Traj,IG AS (G,Pair<C,LIN*,DC,LIN*>*) IC-pair
DEFINE xy-segment AS (C,LIN*) IG-pair->first
WHERE Mut,Sat(*xy,segment, Fairfax

//
DEFINE trajectories-of-xy-segment AS (Set<DC,LIN*>*) IG-pair->second
FROM *trajectories,of,xy,segment AS traj

AS CSet<G,Pair<C,LIN* ,DC,LIN*>*>*) Candidate-Traj ,IC

// Note: MUT-SAT
// on C-LIN

It is important to note, that, while we intuitively explained the use of the IG, AG
and LAG by examples, these primitives can be applied to any CollectionMonoid<A>.
For the IG the user needs to provide a transformation producing, for each element
of type A an instance of (another) commutative and idempotent monoid (see [BW95]
for details). For the AG and IAG, an approximation of elements of type A must be
provided by the user. The IG, AG and IAG are used to facilitate the query trans-
formation rules supporting approximation-based filtering (by using less expensive
predicates first) and indexing (see [BW95]).

9 Related Work
No technology for declarative and efficient querying of databases involving constraint
objects exists today. Applications of the kind discussed are typically implemented
by special purpose programs; while these programs may use database and constraint
programming tools, they typically require a considerable programming effort and

73

are not flexible to changes. In addition, they do not perform overall optimization
that interleaves database, mathematical programming and computational geometry
manipulation techniques. Existing DBMS do not manage constraints as persistently
stored data lo. Constraint Logic Programming [?, ?, ?], on the other hand, was not
designed to deal with large amounts of persistent data. Extensions of DBMS with
spatio-temporal operators [OM88, Gut89, Wo189, HC91] typically (1) are limited to
low (two- or, at most three-) dimensional space, (2) have query languages restricted
to predefined spatio-temporal operators, and (3) lack global economical filtering and
deep optimization.

There has been work on the use of constraints in databases, earlier of which
include [Klu88, ?, ?, ?, BS89]. The pioneering work [?] proposed a framework for in-
tegrating abstract constraints into database query languages by providing a number
of design principles, and studied, mostly in terms of expressiveness and complex-
ity, a number of specific instances. The work [HHLvEBSS] considered polynomial
equality constraints, adopting local propagation steps for reasoning on constraints.
A restricted form of linear constraints, called linear repeating points, was used to
model infinite sequences of time points [KSWSO, ?, NS921. More recent works on
deductive databases [MFPRSO, SR92, KS92, LS92] considered the manipulation and
repositioning of constraints for optimizing recursion. Algorithms for constraint alge-
bra operators such as constraint joins, and generic global optimization were studied
in [BJM93], and constraint approximation-based optimization in [BW95]. The work
[KRW93] proposed an efficient data structure for secondary storage suitable for in-
dexing constraints, that achieves not only the optimal space and time complexity as
priority search trees [McC85], but also full clustering. The work [BLLM95] proposed
an approach to achieve the optimal quality of constraint and spatial filtering. A num-
ber of works consider special constraint domains: integer order constraints [?I; set
constraints [Rev95]; dense-order constraints [?I. Linear constraints over reals drew
special attention [ABK95, ?, BJM93, BK95, BLLM95, ?, ?]. The use of constraints
in spatial database queries was addressed in [?I. The work [SRR94] used constraints
to describe incomplete information. Constraint aggregation was studied in [Kup93].

DISCO (Datalog with Integer and Set order Constraints) is a constraint database
system being developed at the university of Nebraska [BR95]. DISCO incorporates
a highly expressive family of constraints. However, its query language has time com-
plexity exponential in the size of a database; hence DISCO’S applicability to real-size
database problems is not clear. Further, DISCO does not support the standard
database features such as persistent storage, transaction management and data in-
tegrity.

the data must satisfy.
‘ONote, integrity constraints used in conventional databases are not data, but rather something

74

I '
10 Lessons Learned
We first summarize some lessons we learned while building the EOSCUBE system.

The twdayer implementation of the constraint algebra was a simple and ex-
tensible solution to the problem of finding the appropriate C++ structures. The
experiences learned while implementing the algebra can be applied to the C++ im-
plementation of other similar multi-typed algebras.

Using Objectstore and CPLEX as underlying components allowed us to concen-
trate on issues related to constraint implementation and to ignore many common
aspects such as the simplex algorithm, persistence, data integrity etc.

However, in the process of development many problems came up while coding
and maintaining some Objectstore-specific parts. The goal was to put the library
on a higher level, making it more flexible and uniform to use. Also, we did not
want to tie the library design to the specific components used underneath. Rather,
we aimed to make it portable enough to be easily transfered on the top of another
object manager and/or LP package. This has been achieved by implementing an
intermediate interface between EOSCUBE and the underlying components, which
isolated the developers and users of the system from Objectstore technicalities. In
order to use a different object manager/LP package, only a relatively small part of
the code will have to be rewritten. A lot of effort has gone in making this interface
both portable and easy to use.

Still, a fair amount of time has been spent on the implementation of the supporting
structures such as search trees and sparse matrices. Even though there are some C++
packages that handle these issues, none of them was flexible enough to be directly
plugged in EOSCUBE.

Currently EOSCUBE does not parse the full C++ grammar. Instead, there is a
precompiler that passes its output over to the C++ compiler. EOSCUBE queries
are embedded in hosting C++ programs and are allowed to use variables declared in
the appropriate scope (with some restrictions). During the implementation of this
scheme we encountered some non-trivial technical problems that required much effort
to resolve.

It is important to note that C++ was the best pragmatic choice for our purposes.
Its compactness and expressiveness power enabled us to make things that would be
hardly possible in any other programming language. The library extensively uses tem-
plates, operator overloading and multiple inheritance. Those features also provided
higher reusability of components which allowed us to reduce the total amount of the
source code (around 11,000 lines now, not including the commercial components).

Even though the query language we presented is an optimization-level language
in which evaluation plans can be explicitly expressed, we found that the optimiza-
tion primitives are not currently automated to the extent they can possibly be. For

I

I
I
I
1
1
1
1
1
t
I
I

75

example, similar to a regular index, the grouping primitives require dynamic main-
tenance. If there is an update in the original collection, the corresponding change
must be made in the grouping structures. EOSCUBE does not support the dynamic
updates in the current implementation. The work in this direction is currently being
performed.

We have described the work on the development of the first constraint object-
oriented database system. Our work aims at the developing a practical and useful
technology for a wide variety of important application realms, for which no existing
technology is applicable. For example, EOSCUBE can be directly used to implement
the real-life data fusion and sensor management system for air-space command and
control [ABK95]. EOSCUBE is a deeply optimizable and extensible system, striking
the balance between expressiveness and computational complexity.

Many research questions remain open (see [Bro] for an overview): in constraint
modeling and canonical forms, data models and query languages, indexing and approximation-
based filtering, and, most importantly, special constraint algebra algorithms for spe-
cific domains and global optimization.

P

P
I
D

&

76

I '
1
1
t
E
i
t:
1

Part v
Global Optimization using
Workflows: Work in Progress
11 Workflow Systems
A workflow is a collection of cooperating, coordinated activities designed to carry out
a well-defined complex process. In the context of EOSCUBE, the activities considered
are computation of interrelated EOSDIS and other scientific products.

A number of workflow representation frameworks has been proposed, the most
common being control flow graphs, triggers (also known as event-condition-action
rules) and temporal constraints.

Figure 6: Control Flow Graphs

To exemplify a control-flow graph, consider an abstract example depicted in the
graph in Figure 1. The example depicts achieving a global task (e.g., generating a

77

..

set EOSDIS products for the sattellite data of 24 hours) using activities E l through
E12 (e.g., involving generating various levels of EOSDIS products, and possibly some
auxiliary intermediate results) going through the starting state A to the final state
K.

The graph indicates that activity E l must precede all other activities, leading to
reaching states B and C, both of which must be pursued to reach the final state K
(the completion of the house construction). There are two alternatives to reach state
J from state B: through D and H or through E. The first possibility must involve
activities E2, E6, and E7, in this order; the second possibility must involve activity
E8 which must be preceded by the activity E3. Similarly, there are two ways to reach
node K from node C.

Today, EOSDIS products do not have this choice of more than one way of comput-
ing. However, as many variants for spatial correlation exemplify, in order to compute
a series of products, a number of generation programs can be implemented (espe-
cially if it only requires little effort). For example, instead of directly computing a
product from its inputs (lower-level products), those inputs can be preprocessed into
a database that will have auxiliary data structures and features (e.g., indexing and
clustering) and then more efficient evaluation strategies can be chosen. Such strategy
may well pay off if a many products are used the preprocessed data, thus amortizing
the preprocessing effort. Or, one can consider a strategy when a number of products
are evaluated “on the fly’, in parallel, when input streams are used in more then one
computation. That is, when a block is retrieved from secondary or tertiary storage,
or produced by a product program, it is used in as many pikes as possible, while it
still reside in main memory. Advantages of each choice depend on the overall data
and system state. Workflow optimization is a natural way to make optimal choices
dynamically depending on the system state.

The control flow graph is most appropriate for depicting the local execution de-
pendencies of the activities in a workflow; it is a good way to visualize the overflow of
control. Control flow graphs are the primary specification means in most commercial
implementations of workflow management systems. As seen in the above example,
a typical graph specifies the initial and the final activity (or a state) in a workflow,
the successor activities for each activity in the graph, and whether these successors
must all be executed concurrently, or it suffices to execute just one branch non-
deterministically. Intuitively, concurrent execution corresponds to AND edges in the
graph, whereas non-deterministic choice corresponds to OR edges. Edges in a control
flow graph can be labeled with transition conditions. The condition applies to the
current state of the workflow (which, in a broad sense, may include the current state
of the underlying database, the output of the completed tasks, the current time, etc.).
When the task at the tail of an edge completes, the task at the head can begin only if
the corresponding transition condition evaluates to true. The Workflow Management

78

E
I
9)

I
R

I
I
I
I
1
I
1
t
I
1

Coalition [101 identifies additional controls, such as loops and sub-workflows.
In the following, we present some work in progress on workflow optimization, to

be used for global optimization in multi-product generation environment. This is a
joint work with Larry Kerschberg from GMU and Samuel Vmas from University Chile
at Santiago, and currently visiting GMU.

12 Workflow Representation and Scheduling
In this section we introduce a workflow graph representation called Workflow Graphs
(G), and we show how the workflow characteristics are represented in such graphs.
Intuitively, Figure 1 represents a Workflow Graph. The notion of Workflow Graph is
formalized as follows.

Definition 1. A Workflow Graph 8 is a triple (V, E , W) ", where:

1. V = (211,. . . , v,} is the set of nodes (called events),

2. E = {e l , . . . ,em} is a set of edges (called activities). Each ei in E is a pair
(T (e i) , H(e i)) where T (e i) E V , called the tail of ei, and H(eJ C V - {T(e i)}
is called the head of ei, and

9. W : E + Itk is a weight function that maps each activity ei in E to a k-tuple
of weights (wf, . . . , w i) .

Note that the tail of ei (T (e i)) represents the incoming node of e, and head of ei

The Workflow Graph that corresponds to Figure 1 is as follows. N = {a, b, c, d, e, f, g, h, i, j , k
(H(e i)) represents the set of all outcoming nodes of ei.

E = { ~ 1 , ~ ~ ~ 3 , ~ 4 , ~ 5 , ~ 6 , ~ 7 , ~ 8 , ~ , ~ 1 0 , ~ 1 1 , ~ 1 ~ } , and el is (%(b,c}), e2 is (h { d }) , e3 is
(b ,{e}) , e4 is (C,{f}), e5 is (c,{g}), e6 is (d , { h }) , e7 is (h { j }) , e8 is (e , { j }) , f% is
(f, {i}), e10 is (9, {k}), ell is (j , { I C }) , and e12 is (i, {IC}).

We denote by O(Vi) the set of all outcoming edges of node vi, i.e., O(vi) = {ej I
T (e j) = vi}, and by I(vi) the set of all incoming edges at node vi, i.e., I (V j) = {ej I
vi E H(ej)} . In addition, we denote by I ei I the cardinality of ei, i.e., the total
number of incoming and outcoming nodes of ei. The size of a Workflow Graph 8,
denoted by size(G), is defined as E, EE I ei I .

Now, we define workflow graph paths and workflow execution plans on Workflow
Graphs.

Definition 2. Let (V, E , W) be u Workflow Graph. Then, a path from a node s to
a node t of length q, denoted by P,t(q), , is a sequence of nodes and edges, (s =

"Workflow Graphs are an extension of directed F-hypergraphs [?I.

79

Figure 7: Path on Workflow Graph

el , ~ 2 , e 2 , - . . , Vjy ej,Vj+l,. . . , v,, e,, vq+1 = t) , such that for all j , 1 5 j 5 9,
vj = T (e j) and vj+l E H(ej) .

As example, in Figure 2 (a , e l , c, e4, f, eg, i, e12, k) is a path from node a to node
k.

If t = s, P,t(q) is said to be a cycle. In a simple path all edges are distinct,
and a simple path is elementary if all nodes V I , v2,. . . , v,+l are distinct. Simple and
elementary cycles we define similarly. A path is said to be cycle-free if it does not
contain any subpath which is a cycle.

To execute a workflow we need to perform a set of activities with a predefine
order. We introduce the concept of execution plan to formalize how workflow can be
executed.

To understand intuitively, an example of execution plan is depicted in Figure 3,
where workflow starts at event a, then activity el is executed. After that, activities
e2, e6, e7, and ell are executed sequentially. In parallel to that, activities e5, eg, and
e12 are executed sequentially. More formally.

Definition 3. Let (V, E , W) be a Workflow Graph. An hyperpath, also called ezecu-
tion plan interchangibly, from an event s to an event t , denoted b y n,,, is a minimal
Workflow Graph (Vn, En, Wn), such that:

2. S , t E vn G V

3. For every v E Vn, v is connected to t in (Vn,En,Wn) by a cyclic-free simple
path, and

80

days, $70)

Figure 8: Execution Plan on Workflow Graph

4. Wn and W ugree on En, ie . , for every e E En, Wn(e) = W(e).

Figure 3 depicts an example of an execution plan from event u to event k. In
this case Vi = {a, b, c, d, f, G , j $ } , En = {el, e2, e4, e69 e7, eg, ell, e12}, and WII =

Note that there are 4 possible workflow execution plans in the Workflow Graph
depicted in Figure 1. In general, for larger or more complex Workflow Graphs the
number of possible execution plans grows exponentially. Therefore, analyzing execu-
tion plans' properties on a Workflow Graph could be a hard problem. We consider the
following problem characterization to analyze workilow execution plans' properties.

Let G = (V,E,W) be a Workflow Graph, and ll the set of all execution plans
from a node v0 to a node vd on 8. we suggest associating an optimal criterion f to
execution plans on ll, Le., f : Il+ R Also, execution plans in ll may be constrained,
i.e., constraints C(p,) are given, pk E n. Then, we consider the following problems.

1. Consistency: Determine if there exists an execution plan that satisfies C.

{wl, w2, w4, w6, w7, w9, wll, w12)-

2. Verification:

81

3. Scheduling: Find an execution plan where C holds.

4. Scheduling Optimization: Find the best workflow execution plan between a node
vo and a node v d , i.e., the optimization problem is as follows:

In general, complexity of (1) corresponds to the number of elements in set n, which
are in the worse case exponential in the size of 8. A possible solution strategy to (1)
corresponds to to examines all their elements. However, there are alternative mech-
anisms to solve (1) rather than an exhaustive enumeration. Recursive optimization
formulations have been proposed, but in general, the problem is a NP-hard [?, ?].

In the following sections we analyze different cases of problem (l), and provide
algorithms to solve effectively.

13 Unconstrained Localizable Scheduling
In this section we consider the case of finding a solution of (1) when there are no
constraints other than those defined by the graph. Still the problem is NP-hard in
general, and we first consider a special important class of objective functions, that
we call locally computable.

13.1 Problem Statement
Definition 4. Let B = (V, E, W) be a Workflow Graph, and ll be the set of all
hyperpaths in G. We say that a function f : n + W is a locally computable function
if for all pair of nodes (vo, vd), such that pod E ll, f can be expressed as follows:

where pod starts with edge e, 3 is a nondecreasing function an terms of { f (P k d) I vk E
H (e) } , and fo is a real value.

An important locally computable function corresponds to the workflow execution
time, i.e., the necessary time to carry out the workflow. In this case, 20 represent the
activity execution time for each ei E E, and function F is as follows.

82

Next proposition provides a mechanism to rewrite (1) ils a recursive optimization
problem.

83

Proposition 1. Let 4 = (V, E , W) be a Workflow Graph, lld be the set of all hy-
perpaths from v, to V d , and f : ll + W be a locally computable function. Then,

1. min f (p) = fo

2. min f (p) = min {w(e) + F({ min f (p') I vk E H (e) }) } (3)
P E n

P E n eEO(u) dEn

Proof. 0

Problem (3) correspond to the generalized Bellman's equations [?, ?], and its so-
lution is a generalization of the well-known shortest-path problem. Now, we present
an algorithm to solve (3) in linear time.

13.2 Shortest Execution Plan Algorithm
The shortest execution plan algorithm [?, ?] assumes that 8 is ordered in inverse
topological order, i.e., nodes are enumerated, such that the following condition is
satisfied:

The following algorithm Acyclic - I T 0 [?, ?] has as input a Workflow Graph (G),
and its outputs are whether 9 is acyclic, and if it so, the inverse topological order.
The algorithm is as follows 12.

Procedure Acyclic-IT0 (8)
for each i E V do Ti = 0
for each e = ({ i } ,H(e)) E E do ri = Ti+ I T (e) I
k = O ; Q = 8
for each i E V if ri = 0 then Q = Q U {i}
while Q # 8 do

select and remove u E Q
k =k +l; rU = IC
for each e E ({ i } , H (e)) E I(u) do

ri = Ti - 1
if ri = 0 then Q = Q U {i}

if (k = n) then

else return "WFG is not acyclic"
return "WFG is acyclic"

12Q is implemented as queue

84

.

I
I
I
I
I
I
I
I
I
1
1
1
1
I
1
I
I
1

When 4 is acyclic, then rU, for all u E E, provides the inverse topological order.
Since each edge is examine only one, complexity of Acyclic - I T 0 correspond to
O (s i z e (8)) [?I.

Now, the algorithm to find the shortest execution plan in a Workflow Graph (8).
The input are the destination node vd and the Workflow Graph G. The algorithm is
as follows.

Procedure SEP-Acyclic(vd, 9)
for each i E V do

Pi = 0
if (i = vd) then f (i) = O else f (i) = 00

for each ej E E do Icj = 0
for i = 1 to I V 1-1 do

for each ej = (~ , H (e j)) E I (i) do
kj = kj + 1
if kj =I H (e j) I then

77 = w (e j) + F({f(i) I i E H (e j)))
if (f(Y) > 17) then
f(Y) = 17
Par = ej

The output is a set {Pi I i E V} indicating, for each node i, which edge has
been selected . Therefore, the execution path is constructed by a forward recursively
enumeration, starting from the origin node of 9.

To analyze the complexity of SEP - Acyclic() algorithm, we first note that each
node and each edge is selected at most once. Therefore, the overall complexity is
O (s i z e (9)) [?I.

14 Constrained Localizable Scheduling
In this section we analyze the constrained problem (1) under locally computable ob-
jective functions assumption. In general, this is a harder problem than the uncon-
straint one, because feasibility (constraint satisfaction) needs to be checked at each
hyperpath. We will consider a special case of constraints called locally computable
constraints, which are defined as follows.

85

14.1 Problem Statement
Definition 5. Let B = (V,E,W) be a Workflow Graph, and II be the set of all
hyperpaths to a node v d in 8. Let g : II + Et+ be a function and R be a positive
real value. Then, we say that a constraint s(nk) = R - g (I I k) 2 0, IIk E ll, is a
locally computable constraint i f for all IId = (Vn,En, Wn) E II, s can be expressed
as follows:

(5)
s (n d d) = R
s(bd) = -wZ(ej) + s ({ s (n k d) I vk E H (e j) }) 2 07 {ej} = Ell n ~ (V O)

where s is a nondecreasing function in terms of { s (n k d) I v k E H(ej)} . Function s
is called slack constraint, and

This type of constraints can be associated with execution time (where R repre-
sents the maximum execution time required). Other characterization correspond to
traversal cost, rank, or distance I?, ?].

Finding a feasible hyperpath recursively requires to define some criteria to dis-
criminate at each step whether an edge may belong to a feasible hyperpath. We
suggest as a criterion the minimum feasible slack defined as follows.
Definition 6. Let 6 = (V, E , W) be a Workflow Graph, s be a slack constraint, and
II be the set of all possible hyperpaths from a node v, to a node v d . We say that
(r1, rp, . . . , rn) is a n-tuple of minimum feasible slack at nodes in V , defined by

minn E n { s (n i d) I S (h) 2 O},

is the slack available at node 21,.

if ?li E Un En Vn
(0 otherwise.

Ti =

Now we can formulate (1) as a constrained recursive optimization problem as
follows.
Proposition 2. Let 8 = (V, E , W) be a Workflow Graph, with W = (w1, wz), and n
be the set of all hyperpaths from a node vi to a node v d . Let f be a locally computable
objective function, s be a slack constraint, and (7-1,. . . , T,,) be a vector of minimum
feasible slacks. Then, the optimal feasible hyperpath l3 from a node v, to a node Vd

problem (1) is equivalent to the following optimization problem.

f (n i d) = min {wl(ej) + F({f (n k d) I v k E H (e j))) I
e E O (U)

s (n i d) = -"2(ej) + S ({ s (n k d) I vk E H (e j) }) 2
V v i E V - (231)) (6)

@ d d) = R7
f (n d d) = f 0 -

13We assume that w1 is related to the objective function and w2 to the constraint

86

.

1
i
f
1
I
I
1
1
1
I
I
I
1
I
f

where 3 and S are nondecreasing functions, and fo is a constant and R is a positive
constant.

Proof. 0

14.2 Constrained Execution Plan Algorithm
The algorithm also requires a topological order of nodes, which is provide by algorithm
Acyclic - ITO. Then, the set of all minimum feasible slack is calculated with the
following algorithm.

Procedure MinFeSlack(B)
for each i E V do

for i = I V I to 1 do
if (i = v,) then ri = 0 else ri = 00

for each k E H(e j) I i = T (e j) do
if ri + w(ej) < r k then

rk = ri + w(ej)

This algorithm examines all nodes and edges once, then, its complexity is O(size(B)).
Finally, a modification of SEP - Acyclic algorithm provides the solution of our

constraint problem (6).

87

Procedure SCP-Acyclic(vd, G)
for each i E V do

Pi = 0
if (i = vd) then

else
j (i) = 0, s(i) = R

j (i) = 00, s(i) = 0
for each ej E E do kj = 0
for i = 1 to I V 1-1 do

for each ej = (y, H (e j)) E I (i) do
kj = kj + 1
if kj =I H (e j) I then

71 = ~ (e j) + F({f (2) I i E H (e j) })
v = -wz(ej) + S({s(i) I i E H (e j) })
if (f(y) > 71 and v 2 q) then

f (Y) = 77
S(Y) = v
Pmr = ej

Algorithm SCP-Acyclic for each node analyzes if there going to be a enough slack
to reach the root node. When there is no enough slack, this is an infeasible possibility,
and then, it is not consider. Since this is just a variation of SEP - Acyclic, with
additional evaluation (slack at each node), its complexity is O(size(B)).

15 Additive Unconstrained Optimization
In this section we extend the concept of locally computable function an optimization.
We reduce problem (1) under certain condition to a network flow (integer linear)
problem, where the solution is always integer.

15.1 Problem Statement
Since locally computable functions require that their values being calculated just in
terms of local elements, many types of functions cannot satisfy this condition. For
example, total cost, total execution time, or any function where its value depends of
an hyperpath. To overcome this limitation, we introduce additive functions defined
as follows.

88

Definition 7. Let B = (V,E,W) be a Workflow Graph, and ll be the set of all
hyperpaths in G from a node zi, to the node vd. Then, we say that a function f : ll -+ W
is a additive function iffor all lld = (Vn, En, Wn) E ll, f can be expressed as follows:

Now, we introduce the concept of hyperflow on a Workflow Graph [?I. Intuitively,
an hyperflow is a flow in hypergraphs, where for each node a conservation flow equa-
tion is specified. In particular, we consider that an unit flow is introduced in node
vo of B and a unit flow is gotten in node vd. We define the following rule when an
edge e has I H (e) 12 2: for each unit incoming flow at edge e the outwming flow is
I H (e) I , i.e., additional f l o w are created for each vi E H (e) .

Although previous rule preserves the unitary of the flow, it creates an additional
problem by the artificial flow creation. To fix that, we introduce the concept of
h-artificial flow edge at each node as follows.

Definition 8. Let B = (V, E, W) be a Workflow Graph. W e say that edge ei is an
hi-artificial flow edge at node v k if: (a) I H(ei) (2 hi and hi 2 2, and (b) them exists
hi different paths from ei to vk without common elements except ei and vk.

From Figure 1, edge el is a Gartificial edge to node I C , i.e., a unit flow incoming

Now, we can define formally the concept of unit hyperflow in a Workflow Graph
to edge el becomes in two units of flows incoming to node k.

as follows.

Definition 9. Let 9 = (V,E,W) be a Workflow Graph, and t9(vk) be a set of hi-
artificial flow edges at node Vk, v k € V . W e say that an unit hyperflow from v, to
vd in 9 is a function x : E + (0) U R+ that satisfies the following conservation
constraints:

-D

Note that (8) can be represented in a matricial way AZ = d, where 3c’ = (xl,. . . , z,)~,
-.
d = (1, 0, . . . , 0, -l)t 14, and a n x rn matrix A, called unitary incidence matrix, where

14We consider that v, and Vd are in the first and last position of brespectively.

89

its (i , j) element correspond to:

. --

-1, if vi E H (e j)
1 - h,, if e, E e(vi)

a,j = (9)

Io7 otherwise.

Matrix A has two important properties, namely: (a) it is an integer matrix, i.e.,
all elements axe integer, and (b) cy==, aij = 0. Last property comes from the fact
that for each edge e all incoming flow is balanced with the outcoming flow. Next
proposition provides the basis for the solution of system A3 = d.
Theorem 1. Let 6 = (V, E, W) be a Workflow Graph, and AZ = d be the hyperflow
constraint conservation on 6. If A = (B R) and 2 = (2 ~ , 2 ~) , where B is a base of
A2 = d Then, for every base B of AZ = Zthere exists an hyperpath II in 6 and vice
versa.

Proof. 0

Now, we rewrite the optimization problem (1) for additive functions as an hyper-
flow conservation problem, where a unit flow is sent from node v, to a node 21d.

Proposition 3. Let 9 = (V, E, W) be a Workflow Graph, ll be the set of all hyper-
paths, f : II -+ R be an additive function, and A? = d be the. unit hyperflow constraint
conservation of 6 . Then,

e EE

s.t . A? = d
Pro0 f. 0

Therefore, we can use the Simplex algorithm to solve (lo), and the solution is an
hyperpath that minimizes the objective function. Next section presents an algorithm
to determine the unitary incidence matriz A.

15.2 Algorithm
The only remaining part from previous section is how matrix A is determined. The
algorithm consists in two steps, where the first one determines an intermediate matrix

90

I
I
1
1
1
I
1
1
I
I
I

A' as follows.

Then, this intermediate matrix A' is

if vi = T (e j)
if vi E H(e j)
otherwise.

xed by adding 1-e hi - art icial edges in
its values. This step assume that the Workflow Graph is in inverse topological order,
and each edge e has $ a set of pairs (e, K) to indicate the ICth node in the H(e) . This
step is as follows.

Procedure IncidenceMatrix(A', 8)
for each vi E V do ICi = 0
for each ej E E do

$j = 0
for q = 1 to I H(e j) 1 do

$j = $j U (j , q)

for each ej E Q(i) do

a!. =a!.- t3 y I aj I
$j = +j - aj

for i = I V l t o 1do

if I aj (2 2 then

if I $j 12 2 then
for each ek E O(i) do

$k = $k U aj

Where set Q(i) = {e I 3(e,r) E UuEl(v)?+bu} and set aj = { (e , q) I 3(e*,r) E
k l (v)$U? e = e* A r # q} .

Algorithm IncidenceMatrix(A', 8) analyzes each node once, and for each node
calculate set Q(i) and for element in such set calculates ai. Then, the overall com-
plexity corresponds to the complexity of set Q(i) times complexity of set aj times the
number of nodes in 8, i.e., O(l V I xO(Q) x O(a)).

16 Extended Workflow Scheduling Problem
In this section we extend the workflow scheduling problem considering that there are
some constraints over a subset of activities indicating if those activities may or may
not mandatory be executed. As example of this type of constraints consider the case

91

when two activities el and e2 are simultaneously allowed or disallowed to appear in
an feasible execution plan, i.e., the logic constraint is (l e l A 7e2) V (el A e2).

16.1 Problem Statement
In general, finding a feasible execution plan under such constraints makes the problem
NP-hard, because there is necessary to check all combinations of allowed activities.
Before we formulate our optimization model we need to define the notion of feasible
instantiation as follows.

Definition 10. Let 9 = (V, E , W) be a Workjlow Graph, c^ be a constraint over
activities el, . . . , e&, and w' = (~ 1 , . - . , wk) be a Boolean vector, such that oi = TRUE,
1 5 i 2 I C , i f ei must be in the execution plan, FALSE if ei must not be in the
execution plan. Then, we say that an instantiation of G is feasible i f it satisfies e.

Note that there are 2k possible instantiations of w' to check whether is feasible or
not, which is the source of the NP-hardness.

The optimization problem can be formulated similar to (1) with the additional
constraint erel , . . . , e k) . Then finding the best execution plan between node a vo and
a node vd can be formulated as

s.t. C(rI,)

q e 1 , - - * 7 ek)

In general, solving problem (12) requires exponential time. However, when a
feasible instantiation of w' is given, problem (12) is similar to (1). This observation is
used to propose a local search algorithm [?, ?, ?] in the next section. In the following,
we consider that function f and constraint C satisfy the condition from sections 13,
14, and 15.

16.2 Local Search Algorithm
A local search algorithm is structured as follows: a number of local searches are
performed, where for each one, the algorithm checks i f the local optimum is better
than the current objective function value. This procedure is repeated until there is no
acceptabIe neighborhood possible or some criteria are satisfied (number of iterations,
minimum value, etc.).

In this case acceptable neighborhoods correspond to feasible instantiations of w'.
Therefore, we need a procedure to generate those neighborhoods. There are many .

92

.

1
I
1
1
1
I
1
1
I
I
I

possible ways to implement this procedure, (sequential, random ,etc.). However, we
do not discuss them here, and we just consider that there is such a procedure called
GetNext Neighbor hood () .

The local search framework get a w' instantiation, let say Gk, and modifies B with
that information (assigns an huge cost to the activities with FALSE). The resulting
problem is one of the problem formulated in sections 13, 14, and 15. Therefore, we
can use the their algorithms to solve the local search (Step 1). The local search
framework is as follows.

Step 0. Assign 0 to I C , w'k = GetNeztNeighborhood(), and f* = 00.

Step 1. Assign wi = 00 if wi = FALSE, and perform a local search, i.e., solve the
shortest execution plan, getting solution nk.

Step 2. if f(nk) < f*, then f* = f(&), and n* = nk.

Step 3. Increase k by 1, select a new w' instantiation, and go to step 2. If there is
no w' instantiation, go to step 4.

Step 4. Report objective function f* and solution n*.
Local search framework complexity, in the worst case, is exponential in terms of

k, i.e., the number of activities involved in constraint e. In particular, complexity
is 0 (2 k ~ I E I xsize(B)), since we have to execute local search algorithm (shortest
execution path) at most Zk times. However, using some additional stop criteria, it is
possible get good solutions without examine all possible combinations.

93

Part VI

Conclusions and Suggested Future
Directions
Main Conclusions in Phase 1:

Q 0 EOSCUBE has the potential for significant productivity gain in specification
and generation of EOSDIS and other scientific products

0 Generation of scientific products from real data sets is feasible using the EOSCUBE
prototype

0 An industrial-strength EOSCUBE implementation will be necessary for deploy-
ment and massive use of the system.

0 The EOSCUBE language should allow incremental extensions, which itre un-

0 The overall evaluation model should also support data-flow processing (i.e.

avoidable in diverse scientific domains

pipeline evaluation), in addition to query processing.

0 The main aspects of global optimization should deal with interleaved pipelined
evaluation of series of inter-related products, and concentrate on optimizing
throughput via data flow control, buffer management, and materialization sup
porting clustering and indexing.

3 Future Action Paths for EOSCUBE:
We elaborate on recommended activities in Section VI. Below is a summary of main
paths of action that will have to be carefully discussed and planned with EOSDIS.

Research Path 0 Optimization algorithms for workflow (for data flow evalua-
tion)

0 Optimization for quasi-views, which dynamically control with each product
query, when the evaluation is postponed and when is restarted

0 Specialized techniques for spatietemporal indexing and clustering
Optimization of materialized views, which support (especially created) in-
termediate results to support clustering and indexing

94

J

I
I
1
1

0 GIS constraint algebras, which will support interoperability with GIS un-
der unified constraint model.

Industrial-strength implementation path

0 Pipeline evaluation model.
0 ODBC support, and through it, a range of object managers and DBMS.
0 Platforms support, including mass storage system.
0 Workflow optimization module.
0 GIS integration.

0 CCUBE/EOSCUBE core, focus-
ing on performance for individual queries.

Collaborative work with Earth scientists on a specific set of new products, and
continued customization of EOSCUBE for them. This will also used as a lever-
age for later massive deployment of EOSCUBE.

Deployment of EOSCUBE to Centers and Support

References
[ABD+96]

[ABK95]

[BJM93]

[BK95]

T. Atwood, D. Barry, J. Dubl, J. Eastman, G Ferran, D. Jordan,
M. Loomis, and D. Wade. The Object Database Standard: ODMG-93.
Morgan Kaufmann, 1996.

T. Aschenbrenner, A. Brodsky, and Y. Kornatzky. Constraint database
approach to spatio-temporal data fusion and sensor management. In
Proc. ILPS95 Workshop on Constraints, Databases and Logic Program-
ming, Portland, OR, December 1995.

A. Brodsky, J. Jaf€ar, and M. J. Maher. Toward practical query evdua-
tion in constraint databases. CONSTRAINTS, A m International J. , to
appear. Preliminary version appeared in Proc. 19th International Con-
ference on Very Lave Data Bases (VLDB) 1993, Dublin., 1993.

A. Brodsky and Y. Kornatzky. The lyric language: Quering constraint
objects. In Carey and Schneider, editors, Proc. ACM SIGMOD In-
ternational Conference on Management of Data, San Jose, California,
May 1995.

95

[BLLM95]

[BLS+94]

[BR95]

P o l

[BS89]

[BTBNSl]

[BTBW92]

[BTSSl]

[BVCS93]

[BW95]

[CS93]

A. Brodsky, C. Lassez, J.-L. Lassez, and M. J. Maher. Separability
of polyhedra for optimal filtering of spatial and constraint data. In
Proc. ACM SIGA CT-SIGMOD-SIGART Symposium on Principles of
Database Systems. ACM Press, 1995.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Compre-
hension syntax. SIGMOD Record, 1994.

J.-H. Byon and P. Revesz. Disco: A constraint database system with
sets. In CONTESSA Workshop on Constraint Databases and Applica-
tions, 1995.

A. Brodsky. Constraint databases: Promising technology or just intel-
lectual exercise? In Proc. ACM workshop on strategic directions in
Computing Research, MIT, Boston. Also, ACM Computing Surveys,
electronic version, and Constraints Journal, to appear.

A. Brodsky and Y . Sagiv. Inference of monotonicity constraints in dat-
alog programs. In Proc. ACM SIGACT-SIGART-SIGMOD Symp. on
Principles of Database Systems, pages 190-199, Philadelphia, 1989.

V. Breazu-Tannen, P. Beneman, and S. Naqvi. Structural recursion as
a query language. In Proc. Third International Workshop on Database
Programming Languages, 1991.

V. Bream-Tannen, P. Buneman, and L. Wong. Naturally embedded
query languages. In Proc. 4-th International Conference on Database
Theory, 1992.

V. Breazu-Tannen and R. Subrahmanyan. Logical and computational
aspects of programming with sets/bags/lists. In Proc. 18-th Interna-
tional Colloquium on Automata, Languages and Programming, 1991.

M. Benjamin, T. Viana, K. Corbett, and A. Silva. Satisfying multiple
rated-constraints in a knowledge based decision aid. In Proc. IEEE
Conf. on Artificial Intelligence Applications, Orlando, 1993.

A. Brodsky and X. S. Wang. On approximation-based query evaluation,
expensive predicates and constraint objects. In Proc. ILPS95 Workshop
on Constraints, Databases and Logic Programming, Portland, OR, 1995.

S. Chauduri and K. Shim. Query optimization in the presence of foreign
functions. In Proc. 19th International Conference on Very Large Data
Bases, 1993.

96

[ea901 0. Deux et. al. The story of 02. IEEE Transactions on Knowledge and
Data Engineering, 1990.

L. Fegaras and D. Maier. Toward an effective calculus for object query
processing. In Proc. ACM SIGMOD Conf. on Management of Data,
1995.

D. Q. Goldin and P.C. Kanellakis. Constraint query algebras. Con-
straints Journal, to appear, 1995.

R.H. Guting. Gral: An extensible relational database system for ge-
ometric applications. In Proc. 19th Symp. on Very Large Databases,
1989.

L.M. Haas and W.F. Cody. Exploiting extensible dbms in integrated ge-
ographic information systems. In Pmc. Advances in Spatial Databases,
2nd Symposium, volume 525 of Lectufe Notes in Computer Science.
Springer Verlag, 1991.

[FM95]

[GK95]

[Gut891

[HC91]

[HHLvEB891 M.R. Hansen, B.S. Hansen, P. Lucas, and P. van Emde Bo=. Inte-

[HLLSO]

[HS93]
- . -

[JMSY92]

[KKS92]

[Klu88]

grating relational databases and constraint languages. Computer Lan-
guages, 14(2):63-82,1989.

T. Huynh, C. Lassez, and J-L. Lassez. Practical issues on the projection
of polyhedral sets. Annals of Mathematics and Artificial Intelligence,
to appear; also IBM Research Report RC 158Z?, IBM T. J. Watson RC,
1990.

J.M. Hellerstein and M. Stonebraker. Predicate migration: optimizing
queries with expensive predicates. In Proc. ACM SIGMOD Conf. on
Managment of Data, 1993.

J. J f lar , M.J. Maher, P.J. Stuckey, and R.H.C. Yap. Output in clp(r).
In Proc. Int. Conf. on Fifth Genemtion Computer Systems, volume 2,
pages 987-995, Tokyo, Japan, 1992.

M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages
393-402, 1992.

A. Klug. On conjunctive queries containing inequalities. Journal of
ACM, 35(1):146-160, 1988.

97

[KRW93]

[KS92]

[KSWSO]

[Kup931

[LHM89]

[LL91]

[LS92]

[McC85]

[MFPRSO]

[NS92]

[OM881

P. Kanellakis, S. Elamaswamy, D.E. Vengroff, and J.S. Vitter. Indexing
for data models with constraints and classes. In Proc. ACM SIGACT-
SIGMOD-SIGA RT Symposium on Principles of Database Systems,
1993.

D. Kemp and P. Stuckey. Bottom up constraint logic programming
without constraint solving. Technical report, Dept. of Computer Sci-
ence, University of Melbourne, 1992.

F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal
data. In Proc. A CM SIGA CT-SIGMOD-SIGA RT Symp. on Principles
of Database Systems, 1990.

G. M. Kuper. Aggregation in constraint databases. In Proc. Workshop
on Principles and Practice of Constraint Programming, 1993.

J-L. Lassez, T. Huynh, and K. McAloon. Simplification and elimination
of redundant linear arithmetic constraints. In Proc. North American
Conference on Logic Programming, pages 35-51, Cleveland, 1989.

C. Lassez and J-L. Lassez. Quantifier elimination for conjunctions of lin-
ear constraints via a convex hull algorithm. Technical Report RC16779,
IBM T.J. Watson Research Center, 1991.

A. Levy and Y. Sagiv. Constraints and redundancy in datalog. In
Proc. 11-th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, 1992.

E.M. McCreight. Priority seaxch trees. SIAM Journal of Computing,
14(2):257-276, May 1985.

IS. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan.
Magic conditions. In Proc. ACM SIGACT-SIGMOD-SIGA RT Sym-
posium on Principles of Database Systems, pages 314-330, 1990.

M. Niezette and J.-M. Stevenne. An efficient symbolic representation
of periodic time. In Proc. of First International Conference on Infor-
mation and Knowledge management, 1992.

J.A. Orenstein and F.A. Manola. Probe spatial data modeling and
query processing in an image database application. IEEE Trans. on
Software Engineering, 14(5) :611-629, 1988.

98

[Rev951

[SR92]

[SRHSO]

I
i

I
1
I
1
I
I
1
1
1
I
I
I
I
1

[Sri92]

[SRR94]

[Wad901

[Wo1891

[Zdo89]

P. 2. Revesz. Datdog queries of set constraint databases. In Proc.
International Conference on Database Theory, 1995.

D. Srivastava and R. Ramakrishnan. Pushing constraint selections. In
Proc. 11 th A CM SIGA CT-SIGMOD-SIGART Simposium on Principles
of Database Systems, pages 301-315, 1992.

M. Stonebraker, M. Rowe, and L. Hiroshama. The implementation of
Postgress. IEEE Transactions on Knowledge and Data Engineering,
1990.

D. Srivastava. Subsumption and indexing in constraint query languages
with linear arithmetic constraints. Annals of Mathematics and Artificial
Intelligence, to appear, 1992.

D. Srivastava, R. Ramakrishnan, and P. Revesz. Constraint objects.
In Proc. 2nd Workshop on the Principles and Practice of Constraint
Programming, Orcas Island, WA, May 1994.

P. Wadler. Comprehending monads. In Proc. ACM Symposium on Lisp
and Functional Programming, 1990.

A. Wolf. The dasdba geo-kernel, concepts, experiences, and the second
step. In Design and Implementation of Large Spatial Databases, Proc.
1st Symp. on Spatial Databases. Springer Verlag, 1989.

S. Zdonik. Query optimization in object oriented databases. In Proc.
23rd annual Hawaii International Conference of System Scienced, 1989.

99

I ' Appendix A

p

h

I
I
I
I
I
I
I
I
I
I

7 S . O)

m

4

I ’ Ouew 1 output:

0.0846923

0.35008 0.235478 0.0327797 0.0294338 0.056053 0.0490407 0.0870465 0.04343 18 0
.O00460318 0.2558 0.321847 0.156925 0.O482OO10.159197 0.130963 0.149418 0.10525
7 0.021373 0.0475394 -0.0249535 -0.012261 0.0866486 0.3171 12 -0.0618164

Appendix B

1

Grid I
String Color;
CST(lat,lon) extent;
i

Double NDVI;
Double SST;
Double CLD;

k

2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Report Documentation Page ; I

13. Type of Report and Period Covered
October 1998 - March 1999

Final

14. Sponsoring Agency Code

1. Report No. r

7. Key Words (Suggested by Author(s))

EOSDIS

9. Security Classif. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

2. Government Accession No.

18. Distribution Statement

Unclassif ied--Unlimited

21. No. cf Pages 22. Price
1

3. Recipient's Catalog No.

4. Title and Subtitle
A Constraint Database System for High-Level Specification and

5. Report Date

Efficient Generation of EOSDIS Products
~

. Author(s)
ilexander Brodsky and Victor E. Segal

8. Performing Organization Report No.

10. Work Unit No.
1. Performing Organization Name and Address
Seorge Mason University
1400 University Drive
'airfax, Virginia 22030-4444 USRA subcontract No. 5555-87-70

6. Abstract
The EOSCUBE constraint database system is designed to be a software productivity tool for high-level
specifiction and efficient generation of EOSDIS and other scientific products. These products are
typically derived from large volumes of multidimensional data which are collected via a range of scientific
instruments.

